
Building Software is Not[1] a Craft

Antranig Basman
amb26@ponder.org.uk

Abstract
Software construction, yet to establish its role in the world, inhabits an invidious position between mathematics,
engineering and craft — losing out by the comparison to each. I draw a distinction between different levels at
which the term ‘craft’ could be applied and list four key virtues desirable for crafted items at a higher level. The
current products of computer scientists or software engineers are deficient in these four virtues, but not necessarily
so. I propose a shift in the value system underlying our work — recognising that the function of material is to bring
communities into contact. I will argue that software is material to the extent it promotes an ecology of artefacts
which cooperate harmoniously in the lives of their owners. Rather than the workmanship of certainty, we should
promote the workmanship of risk, turn from correctness to truthfulness, and consider time horizons of generations
rather than at most a couple of years.

1. Introduction
This paper will take a different course in assessing the nature of software as craft, materials and media
than is traditional in academia. A common setup would have us note some grounds for analogy —
for example, that constructing software requires some skill, is error-prone, and requires labour — just
like a craft. We would then muster the resources of critical theory and subtle argument in order to
extend this analogy, all the while begging the question of whether we are dealing with a craft at all. As
(Wittgenstein, 1953, §414) has it,

You think that after all you must be weaving a piece of cloth: because you are sitting at a loom —
even if it is empty — and going through the motions of weaving.

This kind of error is rife — for example, (McCullough, 1996, p. 119), a seminal work on the craft status
of software construction, argues

But to say that computing is limited because it consists of no more than these few tasks is like saying
painting is no good because all you can do is apply color to canvas.

Instead, I will consider the software that we actually have — and compare it, in terms of the value that its
artefacts offer to society at large, to the highest craft practices that humanity has achieved. I will argue
that a change in the values that we bring to our work can bring about better roles for software artefacts in
our lives. Craft artefacts are produced within a cultural context in which they can seem natural, and can
be holistically integrated into a life or a household. They are connected to human tactility, usefulness,
ergonomics, beauty and durability — all virtues that I will consider as defining true craft artefacts. These
artefacts take part in an ecology of similar artefacts in similar roles, as well as other cooperating artefacts
in the lives of their owners. I will propose a system of values in software construction that promote the
authorial stories which structure these ecologies — how they pass from hand to hand and take part in
networks of creative accumulation and reuse. This in turn feeds back with implications on what we
understand by the nature and properties of the “material” which software should be made of.

2. Craft Status of Software Artefacts
The craft status of software development remains limited, in the crucial senses which mark the phe-
nomenon and results of craft as highly desirable to society. In a looser sense, software development

1Yet



shares some of the aspects of a craft — in the same way that a DIY enthusiast, journeying to their local
hardware store in search of cheap, highly standardised components with poor manufacturing values can
be said to be indulging in a craft as they seek to make some more or less successful home improvements.
But these aren’t the values we should appeal to as we position our “craft” amongst its more established
cousins.

3. Virtues of Craft
As William Morris remarked as he began to establish the English Arts and Crafts movement in 1880,
“Have nothing in your houses that you do not know to be useful, or believe to be beautiful” (Morris,
1880). A true craft produces artefacts that are
Beautiful - giving pleasure in use and contemplation

Durable - long-lived, stable, and if degrading, degrading gracefully

Ownable - can be the possession of their owner, living amongst them in their household

Handleable - fulfil a function which sight and touch fit into an ecology of similar artefacts
In contrast, the outputs of computer science that we see in practice are ugly, brittle, masterful and obtuse.

Let us consider our virtues in turn.

3.1. Beauty
There is an aesthetics in computer science, but it is not for the user and rarely even for the developer.
The model for beauty with any currency is imported wholesale from mathematics — an algorithm can
be elegant, a proof beautiful. In contrast, any actual piece of software, especially one which performs a
useful function, is without fail fantastically ugly, reflecting the haphazard and throwaway values of real
software culture. As Simon Peyton-Jones remarked at the PPIG keynote of 2015, of open source - “It’s
where people go to contribute, but it’s not beautiful”. A pivotal early essay on the craft of programming,
(Dijkstra, 1977) gives a fundamental role to what is called “the beauty of a program”, associating it
with such inhuman virtues as the brevity of a proof of its correctness. However, (DeMillo, Lipton, &
Perlis, 1979) have recognised that “Formal verification of programs, no matter how obtained, will not
play the same role in the development of computer science and software engineering as proofs do in
mathematics.” A piece of software which possesses desirable, useful beauty will exhibit this beauty as
it is worked on throughout its long life. I have seen no sizable or long-lived program that exhibits such
a thing1.

3.2. Durability
The lack of beauty in actual software is intimately tied up in the lack of possibility for any kind of durable
expression — and still less, of any durable function. It is well-known (Programmers’ Stack Exchange,
2014) that software will spontaneously “rot” as a result of a progressive violation of its environmental
assumptions. Sadly, it does not rot gracefully in the manner of a forest log, but disgracefully in the form
of simply failing to install or run correctly or indeed at all. The only hope one has for running an old
piece of software is to create a complete replica of its original home (a “virtual machine”) correct in
every detail, and keep it captive there. If software were a lifeform, it would be an impossibly brittle and
ill-adapted one that would mark in every case an evolutionary dead-end.

Unfortunately, our field does not so far have the courage to face up to this problem. Indeed, one of
its leading lights, Alan Perlis, in (Abelson & Sussman, 1985) speculated whether software might not
inherently lack durability, comparing it to a “soap bubble”. I can’t infer from Perlis’ remark whether
he believed software should lack durability or simply that we lack the understanding to make it so. I
suspect the latter — and if most software didn’t possess the beauty of a junkpile or shantytown rather
than a soap bubble, we could be more sympathetic to its lack of durability.

1With the possible exception of Donald Knuth’s TEX typesetting system, which being almost exclusively the product of a
single mind, has not entered a traditional software maintenance process.



3.3. Ownability
Because it is not durable, but also through further causes, software can never effectively be owned by its
user. Software is less ownable now than it has ever been — with the prevalence of “leasing” models for
software, and increasingly aggressively pushed “updates” which will sometimes interrupt vital human
activities in order to deprive them temporarily or permanently of the use of the artefact that they just
believed was theirs (Hoffer, 2016). This is not the behaviour of a tool or a product, but of a tin-pot
aristocrat transplanted into the user’s home.

3.4. Handleability
Software is legendarily opaque in form and function. It is well-attested that the vast majority of users
are unaware of or unable to exploit the majority of configuration or function which is in theory available
to them (Spool, 2011). The output of a craftsman, whether it takes the form of a spoon, bowl, basket or
chair, even if it is of an unfamiliar form, typically appeals to an immediately obvious use value. Part of
the problem could be ascribed to the novelty of software function, but users have little incentive to invest
effort in becoming familiar with their software, because of our previous point — they have no control
over its form or any ability to resist change. At any moment the familiar may once again be swept away
by the unfamiliar.

4. Our Lack of Materials
Some of the discourse around software “craft” centres on the property of its “material”. We argue
that the core of the deficiencies of software can be ascribed to the lack of anything which properly
qualifies as its material. A true material is the result of a natural process, accumulated and shaped for
years if not millennia. When one applies craft to a natural material, one is engaging with the natural
accident of this process when meeting difficulties of resistance. By contrast, when meeting resistance in
crafting software, one is primarily tangling with the obtuseness of one’s colleagues and their insistence
in retaining authorial power for themselves.

Before software could become a craft, we need to construct its material. The durability of a true material,
as well as enjoying the sheer ability of continued survival, also has the aspect of the ability to participate
in creative networks. A product made of a material can be passed from hand to hand, at each point being
seen in a different role or being the starting point of a fresh creative cycle. We’ll return to the nature of
our materials in section 9.

5. Workmanship Leading to Craftsmanship
(Pye, 1968) makes a crucial distinction between grades of workmanship — the “workmanship of risk”,
where the outcome is at risk at every stage, and under the direct control of the worker, and the “work-
manship of certainty” where variability has been eliminated through a industrial process. Pye is clear
that only the former kind of workmanship can lead to true craft, whereas computer science exclusively
values the latter — in its use of proofs, abstractions, implementation insulation, and other techniques
employed to take power away from the user, by erasing variability and control from production. Pye is
also clear to value the contributions of engineers, who alone are responsible for defining the nature of
materials which lead to real results, as opposed to theoreticians and scientists who accept such materials
as a fait accompli without assigning or recognising credit. (Gabriel, 2012) is also clear to point out that
it is most often the case that principled engineering work long precedes formalisation.

(Lakatos, 1976) on certainty:

“Certainty” is far from being a sign of success, it is only a symptom of lack of imagination,
of conceptual poverty. It produces smug satisfaction and prevents the growth of knowledge.

This leads the way to characterising what constitutes the “risk” in our discipline. (McCullough, 1996,
p. 212), himself following Pye, asks

. . . must a true medium entail sufficient risk and irreversibility to demand the rigor and



devotion that have always been necessary for great works? Can a computer with its undo
and save as functions ever demand sufficient concentration on our part to enable serious,
expressive works to come forth?

Two major routes by which we could or do face risk in the presence of “undo” are discussed in the
following sections.

5.1. Risk through Authority
The first lies in the authoritarian structure of our current authoring idioms. In practice, only a very
limited number of creative choices are delegated to the author dignified by the reductive term “end user”
— and only these can effectively be undone. The greater part of the choices are reserved to the designers
and programmers of the tower of language, platform, application beneath the user’s feet — and these
decisions, from the user’s point of view are irrevocable and can never be “undone”. In practice, the
discourse around design typically stresses the removal of affordances from the user that the designer
considers inappropriate or violate design guidelines from their point of view.

An interesting example of this kind of “dialogue against design risk” emerged during the workshop
conversations supporting (Computing Community Consortium, 2015). One participant warned that user
interfaces should not be made too configurable, otherwise the helpdesk tasked with supporting the user
with their software might be rendered incapable of helping them — because the user had reconfigured
their interface so radically that the helpdesk staff couldn’t recognise it.

This is a form of “positive risk” that we are not exposed enough to. We should try to promote authorial
systems and design communities which allow owners of artefacts to run more such creative risks, whilst
minimising their costs.

5.2. Risk through Unmanageable Complexity
Another route to exposure to risk in the presence of “undo” lies in the potential for the complexity of
artefacts to exceed our ability to manage or comprehend them. This is a risk for amateurs and profes-
sionals alike — if we can no longer comprehend the authorial affordances that we have, and reliably
distinguish the virtues of one version of an artefact from another, it matters little whether all versions of
the artefact that have ever been authored have been perfectly stored and can be instantly retrieved. (Eick,
Graves, Karr, Marron, & Mockus, 2001) report “anecdotal evidence of systems that have reached a state
from which further change is not possible”.

This can be described as a form of “negative risk” that we are all already exposed to — our challenge is
to structure languages and frameworks to minimise the chances of artefacts being “lost” to this risk.

6. Lutyens’ Latch and Barn’s Spoon
As an example of the kind of craft I am appealing to, I firstly exhibit the example of this door latch
(Figure 1) designed by Edwin Lutyens, a prime proponent of the Arts and Crafts movement. Latches
like these can be found throughout his restoration of Lindisfarne Castle which he undertook starting in
1902, as well as some of his other designs. It self-evidently enjoys all the virtues we have listed —
it is highly beautiful (even achieving a kind of wittiness2), and its method of construction, based on
readily available and widely understood materials, is a direct guide to its function. In the unlikely event
that it requires maintenance (having endured intact for over a century), this can be achieved through
widespread means.

Next, as a contemporary example, I exhibit a ‘cawl’ spoon (Figure 2) carved from rippled sycamore by
a modern representative of the Arts and Crafts tradition, Barn the Spoon, at his shop in Hackney Road,
London. Again it enjoys all of our virtues as well as participating in the vernacular both at the level
of its design and its construction — this spoon was carved in the presence of its buyer at Barn’s shop,
creating a direct link between the worlds of authors and users.

2Note that this wit is only interpretable with respect to the ecology of function represented by latches in general.



A lack of durable and natural materials, as well as a suitable craft culture, represent the primary deficits
in computer science which prevent it from constructing crafted items such as these.

Figure 1 – Door latch designed by Edwin Lutyens Figure 2 – Spoon designed by Barn the Spoon

7. Spectrum of Forgiveness
Whilst the software that we have is constituted of a material far more brittle and less malleable than
the least forgiving of the human crafts (for example, ceramics), being a product of the mind, it has the
potential to be far superior to the most forgiving (for example, knitted textiles). The following table
illustrates the affordances that we can expect from different materials.

Ceramics
• Once the product’s form is fixed, it cannot be further altered in a graceful way.
• It is brittle and once damaged cannot be gracefully repaired (a glued repair is always obvious, and

a damaged surface can never be reformed like the original)
Wood

• With some effort, an item can be reformed or repaired, for example by sanding, varnishing, repol-
ishing etc.

• For some items, a broken element can be removed (unglued, unscrewed) and replaced with a new
part which functions and appears as well as the original

Textiles
• Most items can be repaired, sometimes indefinitely, by patching or darning
• In some cases the original raw materials can be fully recovered by unravelling the garment and a

completely fresh one constructed
In contrast, we have

Computer Science of the Present:
• A product may spontaneously disintegrate without warning, suddenly becoming wholly unusable
• No modifications may be made by the owner after delivery of the software, even through amateur-

ish affordances such as superglue
• The raw materials for software are endlessly distant from the owner, separated by a series of

barriers operated by successive priesthoods (compilers, linkers, integrators, hosting services)
Whereas nothing inherent in Computer Science prevents it from being

Computer Science of the Future:
• Any product, either in form, function, or both, may be preserved indefinitely in a working condi-

tion



• Any owner of software may modify and maintain it using only the affordances to hand — or else
share or receive such modified versions from peers or communities of interest

• The raw materials for software are constantly immanent — any user of software, simply through
an act of perception, may choose to see it either as raw materials, finished product, or anything in
between

From its current position as the world’s least forgiving craft, computer science could surpass all those
currently known.

8. Forces Producing the Craft We Have
We have the craft that we do, because of the power structures and mentalities embodied in our commu-
nities. As (Blackwell, 2010) notes:

Even supposedly universal “general purpose” computer languages, although assumed to be
culture-free, become imbued with metaphors of power and control that are easily recognized
when inspected from outside the perspective of their designers and users.

Computer scientists, in theory charged with planning and directing the formalisms underlying the prac-
tices of software construction, have no appreciation of how software is actually made and on whose
behalf. In turn, software engineers adopt methodologies that retain power for themselves at the expense
of their colleagues and users, rather than appreciate that design and usability concerns should be the
paramount ones governing their work3. These usability concerns should be those which emerge when
artefacts are deployed as part of their owners’ households and ecologies of living, rather than reflecting
a process of “abstracting away the user”(Blackwell, Church, & Green, 2008).

8.1. The Term ‘Craft’ in Our Lineage
We can trace back the threads of this discourse as far back as we like. For example, (Dijkstra, 1977)’s
original essay on software craft status insisted that software production should cease to be a craft, rather
than become one - “a craft was applied, where a scientific discipline was needed”. How could Dijkstra
have come to make such a profound category error? It is because he already inhabited a completely
self-sufficient discipline, answerable only to its own aesthetic and formal standards. Dijkstra is already
capable of looking at the only “users” he has known, professional physicists and engineers, with a kind
of amused contempt for their tendency to “write a three-page program in an afternoon”. The thought
that even less-well formally oriented citizens, the general public, could gain access to the affordances
of crafting the software that they need, was unthinkable — these are people “the majority of whom
it is totally unrealistic to expect that they can still acquire a scientific attitude”. Those who imagine
that ordinary citizens could become thus empowered are condemned as “foolish”. These are the roots
of the kind of disciplinary imperialism that within a few decades would bear fruit as the pernicious
“computational thinking” movement of (Wing, 2008).

8.2. Mistaking the Past for the Future
But how could Dijkstra have come to believe that software production was a craft in the first place? The
answer lies in the opening paragraphs of this paper. He had become confused by the simple fact that
the software production process required special insight and skills as a result of its hopelessly unreliable
tools and materials. In fact, in most cases the “craft” of his and our day doesn’t even aspire to the level
of hardware store, flat-pack DIY furniture values that we described. It is as if we bought a kit of parts
for a flat-pack cupboard, and found them hopelessly ill-fitting, some pieces missing and the instructions
written in an unrecognisable language with no illustrations. This is certainly the experience even of a
consumer of what should be the most standard, well-understood and fully reduced to practice products
of computer science — parsers. Anyone who has proposed to design a new programming language and
expected to pick up a parser technology for it “off the shelf” will respond to this point.

3This similarity of workflow and outlook is why I fail to particularly distinguish between computer scientists and software
engineers in this essay.



Rather than, as Dijkstra claims, software production needing to cease to be a craft, it has not even got to
the starting blocks where it could qualify as one. His appeals for a “scientific discipline” and a “scientific
attitude” are wholly misplaced. As is well known, computer science is not a science (Abrahams, 2013).
Its subject matter is not a domain governed by natural laws2 but instead the communities of real human
beings, their needs, cognition, and psychology. Properly understood, Dijkstra’s plea is simply one for
reliability — but reliability does not signify the end of craft, but merely its beginning. Imagine a disci-
pline of carpentry operated by chisels which might unpredictably bounce off perfectly ordinary-looking
pieces of wood, or whose tips might spontaneously disintegrate. This is the world of tools and materials
which computer science has made for itself. Acquiring reliable tools doesn’t mark the beginning of a
science, or Dijkstra’s “production-line worker” — instead “Reliable tools are the beginnings of spiritual
freedom”(Matthews, 2016).

9. What Could Materials Be?
What could the materials be like, which might be the medium for the craft we want?

9.1. Material and Immaterial — Supporting Authorial Stories
There’s potential confusion and paradox in this area, since from a traditional point of view, these mate-
rials are “immaterial” since they aren’t directly constituted as matter in the world that we can grasp with
our hands. (Gross, Bardzell, & Bardzell, 2014) have drawn up three principal models for the materials
of software — broadly speaking, these are i) the traditionally physical, as embodied in tangible user
interfaces, ii) the metaphysical, embodied in the relationships between information, and iii) the tradi-
tions, relations and communication that artefacts enable between people. Of these, I am most closely
in sympathy with the third model — material can be anything it needs to be, either material or immate-
rial, that enables the open, unbounded authorial stories that promote participation in society. Traditional
materials support the growth of traditions — as artefacts are passed from hand to hand, they inspire
others not only by the stories embodied in them but by the fresh stories and uses they may participate
in. Today’s software materials support only “dead-end” authorial stories. To adapt an artefact built with
today’s languages in a way other than its authors intended, one must first “fork” the source code of the
artefact in order to modify it. Version control techniques only provide a paper trail by which this process
could be audited, rather than a transparent means for communities downstream of the fork to remain in
contact with the upstream.

How could we build software that allows us to “change things without changing them”? Just as with the
apparent distinction between the ‘material‘ and the ‘immaterial’, this paradox will lose its force through
a change of perspective. The paradoxes of today will be the unexamined assumptions of tomorrow.

9.2. The Density of Materials
(McCullough, 1996, p. 196-197) cites a quality of materials that underpins their suitability for craft —
their density. Each state of the material is closely surrounded by a dense collection of neighbouring
states that behave similarly. As McCullough puts it, “Density supports engagement not only through
continuity but also through variety”. However, today’s software materials, traditionally consisting of
source code text in an editor buffer, could not be more sparse. The “nearest neighbouring program” to
any given one is separated from it by a vast ocean of syntactically invalid or crashing variants.

A movement exploring such density at the hardware level is known as “circuit bending” (Ghazala, n.d.)
— these groups of enthusiasts assemble components from low-powered electronic circuits into random
configurations and expose them to random electronic signals (within a safe range). When applied to
games consoles of the 1980s, for example (Belojevic, 2014), a surprising amount of interesting be-
haviour results — recognisable sprites or game elements will appear on screen and sometimes animate.
This behaviour shows that the space of allowable system states is dense within the overall space of
available states, and is inconceivable in a system of modern hardware or software. One approach to
increasing the density of valid authorable states is simply to make them more findable via assistance

2despite the belief of some leading lights of the field, e.g. (Hoare, 2014)



from powerful IDEs or code completion techniques. This can carry us a certain distance, but more fun-
damental approaches to rethinking the structure of software materials can make the space of these states
intrinsically dense and naturally navigable. I’ll refer briefly to some such approaches in the next section.

9.3. Some concrete approaches to our new materials
(Basman, Church, Klokmose, & Clark, 2016) explores some concrete strategies for bringing true ma-
teriality to software, by expanding the repertoire of available moves for building authorial stories. A
traditional distinction between artefacts is between those which are “live”, that is, comprise currently
executing systems, and those which are “dead”, taking the form of textual documents or directly au-
thored files on disk. The central dogma of computer science, that live systems are only derived from
dead ones, and not vice versa, is one of the many inflexibilities that prevent communities trying to share
software artefacts from remaining in touch with each other. A side-effect of bridging the gap between
live and dead systems, by corresponding them more closely, is to increase the density of their authorable
states (with respect to invalid ones) — since these states are naturally coordinatised as a result of the
correspondence.

10. Resolution
Our field is making only tiny and halting steps towards craftsmanship. It is increasingly popular to show
relevance to craftspeople by an appeal to our ability to work in their spaces or with their materials (see
(Victor, 2014) or other “Maker” movements), but the only result will be to export our own aesthetics
of frustration and power-worship into already functional communities. The experience of (Blackwell,
Aaron, & Drury, 2014) exhibits the behaviour of craftspeople when provided with pieces of “techno-
junk” such as a USB keyboard which doesn’t work with a USB socket and other similar obstructions:

experiences were . . . “frustrating” — a word that was used consistently and repeatedly in
the artists’ reports

with the result that
busy artists are equally likely to respond to obstacles by shifting their effort to other projects
in which they are making rapid progress

Computer scientists show little recognition of the frustration that their products cause in practice, and
instead imagine that the world would be a better place if more people thought and worked like them —
witness the rise of “Computational Thinking” (Wing, 2008) as the vehicle for this imperialism. Rather
than the virtues we list above, the highest virtues of computer science are the tedious accountancy of
efficiency and correctness. These will create a civilisation of bureaucrats rather than craftspeople.

In some quarters, there are signs of a change of heart. (Blackwell et al., 2008) turn against the tide of
computational thinking towards a respect for the individual human, and (Blackwell & Collins, 2005)
admit the possibility that “an end-user programmer may well prefer to accept the results of an imperfect
execution” — an appeal to the “workmanship of risk”.

However, there are few concrete signs of the durable yet forgiving materials that must underlie true
crafts. There are some simple, house-clearing tasks that we should turn our resources to, before we are
prepared to achieve the higher virtues:

• To guarantee to every user that, once given an artefact, they can always choose to use it in its
current form, regardless of “improvements”, updates, or environmental changes

• For every piece of software to be worked on by means of itself, rather than through the use of
specialised tools only available to an elite at a different site, at a different point in its history

• Given a user’s preferred way of working and seeing, for any system that they start to work with, it
adapt to whatever extent it can to meet those preferences

The latter three of our virtues are something that can be worked on in our lifetimes — and if we succeed
in constructing better, more forgiving materials, our descendants might possibly use them to construct
something which is beautiful.



Acknowledgements
I am grateful to Colin Clark for insightful comments on previous drafts of this essay, and for many of
the connections drawn within it.

11. References
Abelson, H., & Sussman, G. J. (1985). Structure and Interpretation of Computer Programs. MIT Press.
Abrahams, P. W. (2013). Computer science is not a science. Communications of the ACM, Letters to the Editor,

56(1), 8.
Basman, A., Church, L., Klokmose, C., & Clark, C. (2016). Software and how it lives on - embedding live

programs in the world around them. In Proceedings of the Psychology of Programming Interest Group.
Belojevic, N. (2014). Circuit bending videogame consoles as a form of applied media stud-

ies. Retrieved from http://www.nanocrit.com/issues/5/circuit-bending-videogame-consoles-form

-applied-media-studies

Blackwell, A. (2010). When Systemizers Meet Empathizers: Universalism and the Prosthetic Imagination.
Interdisciplinary Science Reviews, 35(3-4), 387–403.

Blackwell, A., Aaron, S., & Drury, R. (2014). Exploring creative learning for the internet of things era. In
Proceedings of the Psychology of Programming Interest Group (pp. 147–158).

Blackwell, A., Church, L., & Green, T. (2008). The abstract is ’an enemy’: Alternative perspectives to computa-
tional thinking. In Proceedings of the Psychology of Programming Interest Group (pp. 34–43).

Blackwell, A., & Collins, N. (2005). The programming language as a musical instrument. In Proceedings of the
Psychology of Programming Interest Group (p. 120-130).

Computing Community Consortium. (2015). Promoting strategic research on inclusive access to rich online
content and services.. Retrieved from http://cra.org/ccc/resources/workshop-reports/

DeMillo, R., Lipton, R., & Perlis, A. (1979). Social Processes and Proofs of Theorems and Programs. Communi-
cations of the ACM, 22(5), 271-280.

Dijkstra, E. (1977). Programming: From Craft to Scientific Discipline.. Retrieved from https://www.cs.utexas

.edu/users/EWD/transcriptions/EWD05xx/EWD566.html

Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S., & Mockus, A. (2001, January). Does code decay? assessing
the evidence from change management data. IEEE Trans. Softw. Eng., 27(1), 1–12.

Gabriel, R. P. (2012). The structure of a programming language revolution. In Proceedings of the ACM Onward
2012 (pp. 195–214).

Ghazala, R. (n.d.). Circuit-bending: a bender’s guide. Retrieved from http://www.anti-theory.com/soundart/

circuitbend/cb01.html

Gross, S., Bardzell, J., & Bardzell, S. (2014, March). Structures, forms, and stuff: The materiality and medium of
interaction. Personal Ubiquitous Comput., 18(3), 637–649.

Hoare, T. (2014). Laws of programming: The algebraic unification of theories of concurrency. In P. Baldan &
D. Gorla (Eds.), CONCUR 2014 – Concurrency Theory: 25th International Conference (pp. 1–6). Berlin,
Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-662-44584-6_1

Hoffer, S. (2016). Windows 10 Update Interrupts Weather Report. Retrieved from http://www.huffingtonpost

.com/entry/microsoft-update-weather-report_us_572241f2e4b0f309baf0082a

Lakatos, I. (1976). Proofs and refutations: The logic of mathematical discovery. Cambridge University Press.
Matthews, R. (2016). Personal communication.
McCullough, M. (1996). Abstracting Craft: The Practiced Digital Hand. MIT Press.
Morris, W. (1880). The Beauty of Life. A lecture before the Birmingham Society of Arts and School of Design

(19 February 1880).
Programmers’ Stack Exchange. (2014). What is meant by “code rot”? Retrieved from http://programmers

.stackexchange.com/questions/255866/what-is-meant-by-code-rot

Pye, D. (1968). The Nature and Art of Workmanship. Cambridge University Press.
Spool, J. (2011). Do users change their settings? Retrieved from https://www.uie.com/brainsparks/2011/

09/14/do-users-change-their-settings/

Victor, B. (2014). Seeing spaces. Retrieved from http://worrydream.com/SeeingSpaces/

Wing, J. M. (2008). Computational thinking and thinking about computing. Retrieved from https://www.cs.cmu

.edu/afs/cs/usr/wing/www/talks/ct-and-tc-long.pdf

Wittgenstein, L. (1953). Philosophical Investigations. Macmillan.


