
C O V E R F E A T U R E

28	 Computer	 Published by the IEEE Computer Society	 0018-9162/08/$25.00	©	2008	IEEE

Can Programming
Be Liberated,
Period?

N
ine years ago, I sat down to write about a
dream, one that would allow us to go from
intuitively “played-in” scenarios to running
code. Some of its most technically challeng-
ing parts were stated without providing too

much support for their feasibility. Hence the choice of
the term “dream.” Ever since that paper was first pub-
lished in 2000,1 not only hasn’t the dream evaporated,
but it has continued to have a nagging presence, looming
even larger in my mind, and getting broader and more
elaborate by the year.

More significant is the fact that quite a bit of work has
been carried out since then, which, while still a far cry
from justifying the replacement of a dream by a plan,
does now seem to offer some preliminary evidence of
feasibility. Consequently, I’ve decided to revisit the topic
and to describe the dream anew, or, more correctly (but
possibly not very wisely), to propose a more dramatic
and sweeping version thereof.

I should apologize to the reader at the start that this
article doesn’t get very specific or technical at all. More-
over, with the exception of the sidebar, it might read
like the ramblings of a crazed, or dazed, individual. I
should also point out that this article’s title is, of course,
intended to be a catchy take on the title of John Backus’s
wonderful Turing Award lecture and paper, “Can Pro-
gramming Be Liberated from the von Neumann Style? A
Functional Style and Its Algebra of Programs.”2

Programming’S StraightjacketS
We’ve come a long way since programming had to

be done by tediously listing machine-level instruc-
tions that prescribed how a specific computer was to
modify and move bits and words in its memory. It’s
not my intention to attempt a survey of the history of
programming. Still, it’s obvious that there has been an
amazing transition up the language-generation ladder,
from machine languages to assembly languages, then to
conventional imperative programming languages, and
from there to the variety of contemporary program-
ming styles—functional, logical, concurrent, visual,
synchronous, constraint, object-oriented, aspect-ori-
ented, and on and on. And there also have been numer-
ous special-purpose languages, constructed for specific
kinds of applications.

However, there is a sense in which programming is still
the same kind of technically tedious task, albeit carried
out on a higher, more appropriate, level of abstraction. It
still entails writing programs, usually by using symbols,
keywords, and operational instructions to tell the com-
puter what we want it to do. A compiler is but a means to
translate in reverse, down the generation ladder, render-
ing high-level programs readable and executable by the
machine. And programming still requires testing and
debugging, or preferably verification, to make sure that
what we told our computer to do will have the results we
desire. Moreover, we also must carefully specify the very

the author describes his dream about freeing ourselves from the straightjackets of

programming, making the process of getting computers to do what we want intuitive, natural,

and also fun. he recommends harnessing the great power of computing and transforming a

natural and almost playful means of programming so that it becomes fully operational and

machine-doable.

David Harel
Weizmann Institute of Science

	 January 2008	 29

concept of what we desire, which often is as complex and
as error-prone as the program itself.

In the present time and age, there is an additional com-
plication, which stems from the ever-increasing num-
ber of applications that involve multiple “pieces” that
operate concurrently and are often widely distributed.
Just think of Internet applications and web services, for
example. For these, the added issue involves having to
program each part separately, and then having to make
sure that the compound behavior, the orchestration of
the parts, results in what we want.

I submit that, by and large, even the most modern
approaches to programming still suffer from these con-
straints, which we might term the “three straightjackets
of programming”:

(I) the need to write down a
program as a symbolic, textual,
or graphical artifact;
(II) the need to specify require-
ments (the what) separately
from the program (the how)
and to pit one against the other;
and
(III) the need to structure
behavior according to the system’s structure, pro-
viding each piece or object with its full behavior.

Can we liberate programming from these three con-
straints: from the keyboard, from the thankless tension
between the what and the how, and from having to parti-
tion the dynamics along the lines of the structure?

But what is the alternative, we might ask. How can we
program a computer without telling it exactly what to do,
and without having to use a tangible medium to inscribe
that telling? How can we ever be sure that what we get is
what we wanted unless we state both and then compare
them? And how can we program a multitude of things,
other than by giving each thing its own instructions?

Of course, there are entire approaches to programming
for which the explicit intent is to remove or alleviate some
of these constraints. Thus, for (I) above, researchers have
developed novel techniques in certain specific applica-
tion areas to decrease the effort involved in writing the
relevant programs; query-by-example for relational data-
bases is such a technique,3 as are spreadsheets.

For (II), logical and functional languages,2,4 as well as
many attempts at what has been generically called auto-
matic programming, such as the particularly ambitious
and interesting idea of intentional programming,5 are all
intended to allow us to state what we want, with much
of the how-it’s-done left to the compiler or interpreter.
The intent is similar for constraint-based languages6 and
special-purpose application generators. And for (III), the
recent wave of aspect-orientation7 tries to ease the need
to totally align behavior with structure by making it

•

•

•

possible to supplement the internal behaviors of objects
with special kinds of cross-cutting behaviors that weave
through several of them.

My dream is a lot more ambitious. I am much greedier,
and want it all. Can we not, I ask, push the envelope on
all of these, and in the process try to change the face of
programming? Not just by a new generation of higher-
level languages or an innovative methodology, but by
approaching programming quite differently. My dream
is about freeing ourselves from the straightjackets of pro-
gramming, doing our work in a far more liberated way,
making the process of getting computers to do what we
want intuitive, natural, and also fun. I move that we
harness the great power of computing to help in this

very quest, in making a far more
profound downward transition
than that embodied in compilation,
taking a natural and almost playful
means of programming and trans-
forming it so that it becomes fully
operational and machine-doable.

And lest you are thinking, “Okay,
here comes another one of those
people—a guy with a magical solu-
tion to all problems,” I should add:

No, I don’t have a solution. I don’t have anything that
works for all kinds of programming, and I definitely
have nothing that is magical. However, some prelimi-
nary evidence indicates that the yellow brick road might
be worth a walk, at least for a certain type of program.8
But the message here is definitely “maybe we should be
thinking about this some more,” not “if you just do it my
way you’ll be fine.”

the Dream, Part 1: Playing in the Program
Programming is not about doing; it’s about causing

the doing. We “program” all the time, although not nec-
essarily computers. We get (or try to get) other people to
do what we want, and we guide them to behave in ways
we approve of. We bring up our children, we supervise
underlings, and we run companies, departments, and
faculties. We make sure (or try to make sure) that our
stockbroker, our handyperson, and our real estate agent
do what we want.

We achieve these things by issuing explicit instructions
when needed. However, more importantly, this usually
requires a combination of laying out general principles,
showing or walking through examples of what we have
in mind (or being an example), and prescribing rules
and conditions for what can or must be done versus
what must not or cannot be done. Increasingly, we rely
on the accumulated abilities of the person being “pro-
grammed” to abide by this guidance (and of course on
that person’s willingness and integrity—or fear of the
repercussions). To varying degrees, organizations and
governments, as well as religions, also work that way,

can we liberate programming
from the keyboard,

from having to specify
both the what

and the how, and from
the system’s structure?

30	 Computer

C O V E R F E A T U R E

getting people to be good citizens. Notice that restric-
tions and constraints are a natural and crucial part of
this “programming.” If it is important that something
be done, no matter what, or that something is never
done, we simply say so explicitly (or the book of regula-
tions says so, or the Bible says so, or whatever), and the
person doing the doing must comply.

My dream is to be able to program computers that way
too. I’d like for us to be able to remove the double quotes
from the previous paragraphs, to substitute computers
and computational devices for people and organizations,
and to find similar ways to make machines do what we
want. Ways that come naturally to us and are a smooth
extension of the way we think; ways that require far
less technical prowess than today’s programmers need,
and which allow flexibility on the computer’s part in
achieving the goals we have set out
while honoring our requirements
and making sure not to violate any
of our constraints.

So far, this sounds like an illu-
sion—worse, a hallucination—
rather than a good old solid dream.
Let me try to put some flesh on it by
talking about actual computers.

Although they are not quite like
humans (notice the omission of the
word “yet”), computers are coming along in leaps and
bounds. It is hard to guess what the world of computing
will look like in, say, 20 years, but we are already see-
ing amazing progress in language and voice recognition,
vision, human-machine interfaces, logical and deductive
abilities, heuristic reasoning, and much more. And all
this without even mentioning the web and the way it’s
changing so many of our conceptions about computers
and computing.

In many cases, the mathematics and algorithmics that
underlie things computers do are getting more deeply
buried inside, far from the user and often even from the
programmer. And that’s the way it should be, I claim, just
like the way calculations underlying a spreadsheet are hid-
den from its user. In fact, the very borderline between user
and programmer is becoming blurred.

Increasingly, computing calls for having to program
incredibly complex reactive systems,9 rather than sys-
tems whose role is to carry out numerous calculations.
These are highly dynamic, discrete, event-driven sys-
tems, often with stringent timing constraints.

A reactive system’s complexity is far less a result of
complex computation and heavy algorithmics or the
need to explore and mine intricate data. Rather, the
system’s complexity is a result of its subtle and complex
(and often unpredictable) interactions with its environ-
ment and among the various parts of the system. These
interactions consist of triggered and triggering events,
changes in values, time-related constraints, probabilistic

decisions, and so on, potentially happening in parallel in
synchronous or asynchronous ways.

I believe that, as a general family of challenges for
the world of computing, reactive systems are not only
the hardest and most complex but also those in which
centrality and significance will only increase. Again, no
divine prophecy is required to see this; we only need to
take an educated look at this Web-dominated, comput-
ers-are-everywhere era. Hence, although there are many
significant kinds of nonreactive systems, and similar
dreams might be articulated for them too, I dream about
reactivity, to which the bulk of this article is devoted.

I claim that current methods for dealing with program-
ming the dynamics of reactivity, however powerful and
convenient, suffer from the same woes: We sit in front
of a screen and write (or draw) programs that prescribe

the behavior for each of the relevant
parts of the system over time. Then
we must check/test/verify that the
combined behavior of all the parts
satisfies a separately specified set
of requirements or constraints. I
dream of being able to do this quite
differently.

Suppose you want to program
a mobile phone. In fact, to make
the story a little more direct, let’s

assume you’re holding the phone in your hand, but that
it’s not a phone yet. It looks like one—it has a display
screen, standard phone keys, four or five additional but-
tons, a port for communicating with the cellular anten-
nas, and so on.

Let’s further assume that you know the basic sepa-
rate capabilities of each of these features. For example,
the user can press and release a key, the device’s inter-
nal illumination can be on, and so forth. The user can’t
manipulate the display, but the display can be on or off,
show alphanumeric characters, display graphics and
animations, and so on. However, other than knowing
about these objects and their local capabilities, this is
not yet a phone at all. It hasn’t yet been endowed with
phone-like behavior; you press a key, for example, and
nothing happens.

What would be the most natural way to “teach” the
device to be a phone? If you could talk to it, like you talk
to a child or a student you are supervising, how would
you proceed?

Well, as a start, you might say to it something like this:
“Hey phone, whenever I press this key and hold it down
for at least a half-second, you should switch on—meaning
that your display should light up and show the cellular
provider, my name, and the time.” You might then give
it similar instructions for switching off, possibly adding
something like, “And, by the way, despite what you’ve just
heard, don’t ever switch off if the display shows that a text
message is still in the process of being sent.”

reactive systems are
not only the hardest

and most complex
but also those in which

centrality and significance
will only increase.

	 January 2008	 31

I should remark here that for the sake of this article,
the example has been made rather simple. In actuality,
we might also want to include in the switching on and off
the starting and stopping of the communication between
the phone’s port and the cellular antenna. The protocols
for these communication exchanges would have to be
specified too.

You might next decide to start dealing with calls, say-
ing something like, “Here’s an example of how I’d like to
make a call. If I press between three and 12 numeric keys
sequentially, and then I press the green send key, you, in
response, are to send out a call request to the cellular
antenna containing the number formed by the pressed
keys.” To this you might add, “But if any two keys are
depressed at the same time, you do nothing.”

I’m not saying that this is exactly how I dream of pro-
gramming a cell phone, but it’s not
that far off. Here are some relevant
points.

First of all, if we don’t have a
phone, there’s no point in trying to
talk to it. Rather, we would be deal-
ing with a computerized mock-up
image of the phone, say, as a GUI
on a computer screen. If we already
have a graphical design for the
phone, this would allow us to lay
out the various objects as they would appear on the real
thing; if not, we could show them in abstract form, say,
as a structure diagram or object diagram. It would also
make it easy to include in the process internal objects
that the phone’s user won’t normally see, as well as non-
tangible objects that no one will normally see. Moreover,
if we did have a real physical phone, but devoid of behav-
ior, I can imagine working opposite it with no need for
a soft mock-up of any kind.

Second, this process is about communicating to the
system, in a natural style, the various pieces of behavior
that we are interested in (or examples thereof) and teach-
ing the system how to participate in them. These slices or
chunks of behavior are not homogeneous in relation to
the programmed system’s desired overall behavior. They
are multimodal; they can be specified to be a mandatory
part of the behavior or a conditional part; they can be
forbidden or preferred; they can be probabilistic, nonde-
terministic, or time-controlled; and so on. My point is
that all of these are legitimate parts of the programming
process—just like our telling someone what they can or
cannot do, or when and under what conditions is part
of our “programming” them.

Third, although advances in speech recognition and
natural-language processing might eventually make it
possible to freely talk to a phone or to its onscreen image,
the sample session above is not about talking; it is about
walking. That is, the process of realistically walking the
system through the scenarios, hand-holding it while we

show it, in a manner of speaking, how to cross a busy
road without getting killed.

The term I have used for this in the past is play-in.5 The
point is not to talk about manipulating keys and displays,
but to actually do the manipulation ourselves, in much the
same way we expect to do it when the phone is built and
we are using it rather than programming it. Rather than
saying to the phone, “When I press this key …” the pro-
grammer would actually do it, for example, by clicking its
onscreen image. Instead of saying, “You now make this
light come on,” we would actually show the phone what
it should do by turning the light on—say, by selecting this
action from a list of the light’s capabilities.

Anything done in this way is done on the screen,
or with the physical behavior-free system, in exactly
the way we would like to see it done in the final pro-

grammed system. Representative
examples, such as placing a call,
would also be played in directly.
The programmer would do this in
a generic, by-example mode—just
like the parent or educator—play-
ing in an actual example of dialing
a number, taking care to differenti-
ate the example parts of the behav-
ior from the fixed ones, and making
the appropriate links—for example,

the sample number dialed would have to be linked to the
one sent out to the antenna.

Fourth, while many systems lend themselves nicely
to GUI-based rendition, there is no a priori reason why
we cannot carry out a similarly intelligent tutoring-like
play-in process for systems whose front end is less dis-
crete and less rigid. I am sure that experts on human-
computer interaction would be able to come up with
all sorts of analogs of the click, drag, and menu-select
actions we do on GUI objects, which would work for
playing in the behavior of more dynamically animated
systems, such as games, navigation systems, automotive
systems, tactical and avionics simulations, and so on.
Thus, hybrid systems, which mix the discrete with the
continuous and stochastic, are a special challenge here.
Note, of course, that the better human-machine inter-
faces get, the richer play-in can become. A good example
would be the ideas in Microsoft’s experimental tabletop
computing system.

Notice that I’ve said nothing yet about how to run
“programs,” only about how to “write” them. Neverthe-
less, it might make sense to pause here for a moment and
see how this kind of intelligent play-in avoids the three
main woes of programming—at least for the dynamics
of reactive systems.

For issue (I), play-in is a walkthrough-style guiding,
teaching, coaching, constraining process, playfully inter-
active, that is carried out directly and visually with the
system’s external or internal interface, and it does not

Play-in is intended
to constitute a

natural and smooth
computerization of how

we’d cause some entity to
behave the way we want.

32	 Computer

C O V E R F E A T U R E

require the programmer to sit down and prepare a com-
plete artifact of any formal kind.

For issue (II), both the what and the how are equally
valuable parts of the play-in process, which can contain
as much of either as the programmer decides. There is no
need for separate specifications for the operational tasks
and the requirements thereof. Anything that falls inside
the total sum of what has been played-in will be a legal
behavior of the system.

And finally, for issue (III) there is absolutely no require-
ment to capture or specify behavior per object/part/
piece/chunk. On the contrary, I believe that the dynamic
and interactive style of play-in encourages specifying
interobject, or interpiece, behaviors whenever possible.
But in any case, we should be free to specify behaviors or
behavioral rules or constraints any way we want, even if
they are, in our minds, orthogonal
to the system’s structure.

Incidentally, removing limita-
tion (II), about separate whats and
hows, also helps to deal with the
classical question of completeness,
that is, figuring out when we’ve fin-
ished the programming. The reason
is that one way of describing play-in
is that we can use it to program in
the requirements directly, as part of
the program. When we’ve finished doing that, we can be
sure that nothing important has been left out, unless the
requirements document left things out, something that
in general no one can discover.

Also, regarding limitation (III), once we have liberated
the programmer from having to divvy up the system’s
behavior along the lines of its structure, endless new pos-
sibilities open up. A central possibility involves changes
and updates. For example, this style should make it pos-
sible to conveniently remove pieces of behavior that we
don’t like and replace them with others, which is quite
different from replacing a tangible part of the system
with some new one. I would love to be able to reprogram
the interactions that the web-based systems I work with
force me to follow—not to mention reprogramming my
annoying and unnecessarily complicated DVD. I can’t
change the way Amazon or B&H respond to what I do,
for example, but I can surely change everything that has
to do with the way my browser and my computer deal
with these websites. And how better to do that than by
simply canceling some pieces of interactive behavior and
playing in new ones, using the very interface on which
we interact, subject, of course, to my inability to change
their behavior?

As to inheritance, my take is that its most interesting
(and eventually useful) facet involves substituting objects
in ways that preserve specific interobject behaviors. A
good example involves replacing your secretary. You
don’t mind working with another secretary with differ-

ent ways of doing things (and indeed with a possibly dif-
ferent set of things he or she can do). However, you want
to ensure that the new person will be allowed to replace
the old one only if certain behaviors are preserved. Here
you would have the flexibility of detaching the struc-
ture (the substitutability of an object) from behavior (the
maintained/inherited behaviors).

If hard-pressed to say in a nutshell what the play-in
idea embodies, I would emphasize the fact that it is
intended to constitute a natural and smooth comput-
erization of how we’d cause some entity to behave the
way we want. The programmer teaches and guides the
computer to get to “know” about the system’s intended
behavior under development. This is done by working
with—nay, playing with—the system itself or some soft
version of it, and it should be done in the way that most

naturally reflects how the program-
mer thinks about that behavior. It
can contain any number and any
combination of complicated modal-
ity-rich pieces of behavior, which
can in turn involve many pieces of
the system, intermixed with local
behaviors, and they can be tempo-
rally short or lengthy. These pieces
should be allowed to express actual
operational instructions, as well as

examples, guidelines, rules and constraints, and so on.
Whatever is natural for the programmer, and can be
conveyed to the system under development by an intui-
tive hands-on process, should be allowed.

Of course, this sounds exceedingly naïve, offering
little more than the simple statement that almost any-
thing goes. And that’s easy to say in a section about how
to program, but it generates a heavy debt, one that will
have to be repaid when we talk about how to run those
“programs.”

the Dream, Part 2: running the Program
So now we have to discuss what happens during and

after play-in. Although play-in doesn’t seem to require
coding in some language, the play-in process itself is a
language of sorts, and it’s something formal-looking that
the computer understands will have to be generated as its
result. Here “understand” must mean, at the very least,
“knows how to execute/run.”

How can we do that? Well, since we haven’t yet left
dream mode, I can still answer in lofty words: I believe
we can, and should, harness all the power of computing
to do exactly that.

To start with, play-in must be worked out in such a
way that, as behavior is being played in, the process is
somehow recorded. It would have to be subjected to the
required on-the-fly processing, including possibly speech
and natural-language recognition, and then to formal-
ization and logical capture. This would have the effect of

Play-out means
employing powerful

computing transparently
to execute the grand total

of all played-in
pieces of behavior.

	 January 2008	 33

transforming the play-in sequence into a formal artifact,
whose semantics captures the properties of, or the con-
straints on, the allowed traces of system behavior.

In fact, we can view play-in as a means for coaxing
temporal specifications of behavior out of the user, and
a natural medium in which to formalize these specifi-
cations would be some version of temporal logic. This
would then be the “code” resulting from the piece of
programming carried out. Learning theory and other
AI techniques might very well be needed here to intel-
ligently generalize examples into generic behaviors and
to become smarter at understanding the more elaborate
behavior that might be played in later. Thus, play-in will
have to be formulated as a “language” amenable to this
kind of analysis.

My firm conviction (and experience) is that even very
liberal and informal notions of play-
in will yield to such a formalization
approach, as long as the program-
mer can get immediate feedback
about how the playing in has been
rendered. This must include making
it possible for the programmer to
observe both the generated formal
version of the played behavior as
well as its immediate effect on the
played interface.

The main thing however, is this: At any point in the
play-in programming process—and a special case of
this is when the programming is over and we have the
final system that must start operating—the programmer
can ask to run the current version of the program. This
really means that powerful and heavy computing would
be employed transparently to execute the grand total
of all the played-in pieces of behavior. We have termed
this process play-out,6 and it should be doable in inter-
preter-style mode (direct execution) or in compiler-style
mode (synthesizing an executable). The programmer
should be able to play with the play-out, so to speak,
moving around among the possibilities and narrowing
things down—all naturally and intuitively. Of course, if
needed, the programmer should also be allowed to make
changes in the formal rendition.

Again, this is easier said than done. What does it mean
to execute, or play out, the grand total of the played-in
behaviors? This is best explained by going back to our
earlier metaphor.

Not only do I dream of programming computers the
way we educate children, teach students, or make good
citizens, but also of running those programs the way
we expect that those people then go off and proceed to
live their lives. Whenever we feel as if we have given the
system enough instructions and guidelines, we set it free
to start behaving. It can then do whatever it feels like, as
long as it adheres to whatever was programmed into it
during play-in. Whatever we told it that it must do, it will

indeed do; whatever we said it is not allowed to do, it
will never do; whatever we said it might do (for example,
a nondeterministic or probabilistic choice among several
possibilities), it will decide whether to do or not in the
appropriate fashion, and so on.

In fact, if we ourselves choose to be fully and pedan-
tically obedient (something that, interestingly, humans
cannot really be expected to be but computers can …),
that would be exactly how we would manage our lives.
We all have our “books” of rules, containing all man-
ner of instructions, regulations, guidelines, and laws rel-
evant to our existence, the elements of which come in a
variety of degrees of detail and explicitness. If we choose
to adopt the good citizen stand, we will carry out the
algorithm just described: We’ll live any way we choose,
as long as it is within the confines of those books.

Can we reliably transfer this
procedure to the formal realm of
computing? And if so, what kind of
computational tools would doing so
require?

We must somehow generate
actual behaviors of the system that
are consistent with the collection of
played-in pieces of behavior; this is
often called realizability. And recall
that these pieces are multimodal and

can contain constraints as well as operational instruc-
tions, and thus may limit, or even contradict, each other,
and the entire approach will clearly be highly nondeter-
ministic. (Is this the in silico version of free will?)

The word “consistent” here is crucial. I believe that we
could develop powerful computational techniques and
use them to verify the consistency of what was played in,
to compute and lay out a plethora of traces of behavior
that are consistent with all of that, and then to choose
which of them to actually run/execute. These computa-
tions should be doable on the fly, so that the programmer
can be warned that a behavior being played-in contradicts
what has already been programmed and to provide imme-
diate feedback. More elaborate versions of such computa-
tions that could yield more efficient execution instructions
could be done offline, in a compile-like mode. This differ-
ence is not that important to the issue itself.

What is interesting is that this kind of consistency and
realizability checking, as well as the computing of result-
ing behavior, does not seem wildly impossible. Consider
the former: What we are really talking about is a kind
of verification problem, except that, since here the hows
and the whats are intermixed; verifying one against the
other is really just checking the consistency or realizabil-
ity of the compound “program.” Similarly, computing
legal behaviors of the system, if indeed it has any, is often
called synthesis, or temporal synthesis.10

Both verification and the related notion of synthesis
have been the subjects of extensive research efforts,

this kind of consistency
and realizability checking,

as well as the computing
of resulting behavior,

does not seem
wildly impossible.

34	 Computer

C O V E R F E A T U R E

both on their limitations—for example, the unde-
cidability of certain general versions and identifying
decidable and tractable subcases—and on their effi-
ciency and practicality in actual usage.11,12 In addition
to these, it also seems clear that planning algorithms,

theorem proving, inductive logical reasoning, heuris-
tics, and probabilistic techniques will turn out to be
crucial.

Another major issue that needs to be raised is distribu-
tion and final code. It is all very well to say that we will

Some evidence of Feasibility: Scenario-Based Programming
Having	had	the	play-in	bug	in	mind	for	a	long	time,	

and	wanting	to	see	whether	a	play-in	approach	to	
specifying	reactivity	was	at	all	possible,	it	became	clear	
that	we	needed	a	language	that	was	intuitive	enough	
for	engineers	and	programmers	to	use,	but	which	
was	not	limited	to	specifying	behavior	per	object.	The	
whole	idea	of	play-in	calls	for	freedom	in	talking	about	
the	interaction	between	the	system’s	parts.	

The	turning	point	came	in	the	1998	collaboration	with	
Werner	Damm,	which	resulted	in	the	language	of live
sequence charts	(LSCs).1	This	is	a	temporal	visual	formalism	
that	extends	classical	message	sequence	charts	(MSCs),	
or	their	UML	variant,	sequence	diagrams,	mainly	by	being	
multimodal,	allowing	existential	and	universal	flavors	both	
for	the	charts	themselves	and	for	the	internal	elements.	
(For	the	latter	these	flavors	are	called	hot	and	cold.)	LSCs	
were	defined	in	the	natural	framework	of	object-oriented	
systems,	and	are	also	expressible	in	temporal	logic.	They	
make	it	possible	to	talk	in	operational	terms	about	the	
interaction	between	the	system	and	its	environment	and	
among	the	system’s	objects.	We	use	the	term	interobject	
for	this	and	use	the	term	intraobject	for	the	more	con-
ventional	object-by-object	specifications.	The	language	
allows	specifying	scenarios	of	what	can	and	might	hap-
pen	(like	those	of	MSCs),	but	in	the	case	of	LSCs	also		
what	must	happen,	what	is	not	allowed	to	happen,	and	
much	more.

For	the	next	several	years,	an	extensive	collaboration	
started	with	then-PhD	student	Rami	Marelly.	That	work	
addressed	several	issues.2	The	first	was	to	strengthen	
the	original	version	of	LSCs	considerably,	increasing	
its	expressive	power	by	adding	several	crucial	features.	
The	main	ones	were	the	notion	of	time	(and	a	sort	of	
real	time),	and	a	notion	of	genericity	via	variables	and	
symbolic	instances.	Genericity	allows	using	the	play-in	
process	to	specify	by-example	scenarios,	such	as	mak-
ing	a	specific	phone	call	using	specific	objects	(the	
numeric	keys)	but	where	the	result	of	playing	it	in	will	
be	a	generic	chart	that	refers	to	any	such	objects	and	
therefore	captures	making	any	call.

The	two	major	results	of	the	work	with	Marelly	were	
play-in	and	play-out	for	the	full	language	of	LSCs,	and	
the	construction	of	the	Play-Engine	tool	that	supports	
the	two	techniques.2	For	play-in,	we	use	a	GUI	for	the	
system’s	objects	(whose	internal	local	methods	have	to	
be	given	up	front,	separately),	and	the	kinds	of	play-in	

processes	allowed	are	in	line	with	the	structure	and	
flow	of	an	LSC.	So	we	essentially	play-in	an	LSC	via	the	
GUI	by	clicking	for	activation,	right-clicking	for	method	
and	action	menu	selection,	and	so	on.	We	use	icons	on	
the	tools’	interface	to	select	hot	or	cold,	symbolic	or	
not,	and	other	possibilities	for	the	semantics	of	what	
is	being	played	in.	As	we	play	in,	the	system	generates	
and	displays	the	corresponding	LSC	on	the	fly,	and	
its	effect	on	the	GUI	is	shown	continuously.	Using	the	
Play-Engine,	we	can	actually	play	in	the	behavior	of	a	
mobile	phone	just	as	the	text	of	this	article	describes,	
but	the	porcess	is	more	rigid.	

As	to	play-out,	the	child/student/citizen	algorithm	is	
implemented	as	is.	The	Play-Engine	keeps	track	of	all	
live	(=	active),	or	potentially	live,	LSCs	simultaneously,	
including	multiple	live	copies	of	the	same	chart	with	
different	object	or	value	instantiations.	At	each	step,	
the	algorithm	figures	out	what	actions	are	possible	as	
next	steps,	taking	into	account	the	entire	set	of	pos-
sibilities,	rules	and	constraints,	from	all	the	charts.	Hot	
things	are	always	done,	cold	ones	might	be	done,	and	
forbidden	ones	are	never	done.	When	a	contradiction	
occurs—for	example,	a	clash	between	something	that	
has	to	be	done	and	something	that	must	not—the	
system	reports	a	violation	and	stops.	As	in	play-in,	
play-out	is	carried	out	on	the	GUI,	which	responds	and	
provides	full	visual	feedback	about	the	run,	and	the	
executing	LSCs	are	also	animated	in	the	background.

There	is	something	very	declarative	and	nondeter-
ministic	about	LSCs.	The	basic	“naïve”	play-out	mecha-
nism	deals	with	the	nondeterminism	inherent	in	the	
language	just	as	most	software	development	tools	that	
execute	models	deal	with	racing	conditions:	It	simply	
chooses	one	of	the	possible	next	things	to	do	and	
does	it.	Of	course,	this	can	lead	to	violations,	which	
could	have	been	avoided	had	another	path	been	taken	
instead.	It	could	also	have	been	avoided	had	we	been	
able	to	carry	out	full	temporal	synthesis,	since	if	the	
specification	is	known	to	be	consistent—that	is,	realiz-
able—there	is	a	guaranteed	way	to	make	progress,	and	
play-out	need	never	fail.	

Since	synthesis	is	still	a	rather	futuristic	possibility,	we	
came	up	with	smart play-out.2	In	this	technique,	which	
is	the	heart	of	former	student	Hillel	Kugler’s	PhD	thesis,	
the	tool	translates	the	problem	of	finding	a	nonviolat-
ing	superstep—that	is,	a	sequence	of	actions	that	the	

	 January 2008	 35

use all kinds of techniques to compute the “good citizen”
live-by-the-rules idea of play-out, but there is a nagging
feeling that a naïve approach to this—even if computa-
tionally very powerful—would have to somehow generate
an overall controller or scheduler for the entire system.

For real-world systems (again, we need only consider web
applications as an alarming example), by the end of the
day we are often required to have actual code running
on separate machines, and possibly in separate locations,
working together to constitute the running system.

system	takes	in	response	to	an	external	event—into	a	
verification	problem	and	then	employs	model-check-
ing	to	solve	it.	The	system	then	promptly	executes	
the	resulting	superstep	in	a	way	that	is	transparent	
to	the	user.	This	is	quite	possibly	the	first	use	of	hard-
core	verification	not	to	prove	properties	of	programs	
but	to	run	those	programs.	

While	smart	play-out	is	currently	limited	to	a	single	
superstep,	it	is	not	too	difficult	to	see	that	(in	princi-
ple)	extending	the	idea	to	unlimited	depth	of	the	tree	
of	supersteps	would	be	tantamount	to	solving	the	
consistency/realizability	problem	for	LSCs	and	could	
lead	to	play-out	strategies	that	fail	only	if	there	is	no	
other	possibility.	The	lesson	to	be	learned	from	smart	
play-out,	I	think,	is	this:	We	know	that	verification	
techniques	are	becoming	very	good	at	proving	that	
programs	do	what	we	want;	let’s	now	harness	them	
to	help	get	those	programs	to	do	what	we	want.

Following	this	basic	work,	for	which	we	use	the	
term	scenario-based programming,	several	more	
advanced	pieces	of	work	were	carried	out.	We	have	
recently	devised	another	algorithm	for	executing	
LSCs,	planned play-out,	which	uses	AI-style	planning	
algorithms	to	do	essentially	the	same	as	smart	play-
out.	The	usage	of	planning	here	is	not	surprising,	as	
planning	can	be	viewed	as	a	special	case	of	synthesis.	
One	benefit	of	planned	play-out	is	that	we	can	use	it	
to	find	more	than	one	possible	superstep.	Also,	taking	
advantage	of	the	fact	that	planned	play-out	works	
in	interpreter	mode,	we	have	also	implemented	an	
exploration	mechanism	that	allows	the	user	to	navi-
gate	among	possibilities	during	execution,	trying	
things	out,	backtracking,	and	so	on.	

Both	these	non-naïve	methods—smart	and	
planned	play-out—follow	the	original	play-out	mech-
anism	in	that	they	are	interpreter-style	approaches	to	
execution.	However,	we	have	not	yet	applied	either	
of	them	to	the	full	LSC	language,	with	time	and	sym-
bolic	instances	being	the	main	features	that	cause	dif-
ficulties.	In	contrast	to	this,	we	have	also	exploited	the	
similarities	between	aspect-oriented	programming	
and	the	interobject	nature	of	LSCs	to	build	a	com-
piler	for	a	variant	of	LSCs,	which	translates	them	into	
AspectJ.	This	is	more	than	the	usual	kind	of	compiler-
style	downward	translation:	The	LSCs	are	compiled	
into	Java,	to	which	are	added	what	we	call	scenario	

aspects	to	coordinate	the	simultaneous	monitoring	
and	direct	execution	of	the	compiled	LSCs.	We	can	
then	compile	the	generated	Java	code	and	link	it	to	
a	separately	implemented	Java	program	to	create	a	
single	executable	application.

In	other	work,	we	have	investigated	the	possibil-
ity	of	synthesizing	state	machines	for	the	separate	
objects	from	the	LSCs;	we	have	proposed	a	way	to	
incorporate	a	behavioral	and	object	hierarchy	into	
the	language	to	help	scenario-based	programming	
scale	up.	We	also	have	worked	out	the	corresponding	
enriched	play-out	technique,	and	we	have	devised	a	
distributed	play-out	protocol	for	a	subset	of	the	LSC	
language.	On	a	somewhat	different	note,	we	have	
built	a	linking	tool,	called	InterPlay,	which	program-
mers	can	use	to		mix	interobject	behavior	given	in	
LSCs	with	separate	behavior	given	for	some	of	the	
objects	in	an	intraobject	language,	such	as	conven-
tional	code	or	statecharts.	We	have	also	been	inves-
tigating	how	LSCs	and	the	Play-Engine	fare	in	some	
specific	application	areas,	such	as	telecommunication	
systems,	tactical	simulators,	biological	modeling,	and	
web	services.

Nevertheless,	while	definitely	relevant	to	the	dream	
of	liberating	programming	from	its	three	restraining	
straightjackets,	all	this	work	is	still	partial	and	prelimi-
nary.	There	are	many	serious	issues	that	need	to	be	
resolved	even	if	we	restrict	ourselves	to	the	scenario-
based	language	of	LSCs	and	the	relatively	modest	
versions	of	play-in	and	play-out	that	have	already	
been	worked	out.	We	have	not	yet	dealt	with	consis-
tency,	or	realizability,	except	in	the	limited	scope	of	
a	single	superstep,	nor	have	we	paid	much	attention	
to	the	optimization	of	the	various	execution	mecha-
nisms.	And	determining	how	to	scale	scenario-based	
programming	up	to	large,	multilevel	systems	will	
require	more	than	an	adequate	definition	of	hierarchi-
cal	LSCs	and	distributed	play-out.	

references
	 1.	W.	Damm	and	D.	Harel,	“LSCs:	Breathing	Life	into	

Message	Sequence	Charts,”	Formal Methods in System
Design,	vol.	19,	no.	1,	2001,	pp.	45-80.

	2.	D.	Harel	and	R.	Marelly,	Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine,	Springer-
Verlag,	2003.

36	 Computer

C O V E R F E A T U R E

It’s nice to dream of specifying and executing behavior
in a way that is orthogonal to the system’s breakup into
parts, but the final system implementation very often
must adhere to the boundaries of those parts, and quite
possibly this would include at least parts of the system’s
behavior too. So we will probably have to find ways to
distribute the intuitive played-in behavior, breaking it
up into pieces that the system’s various parts can deal
with. This kind of distributed play-out is highly non-
trivial and calls for a distributed variant of the synthesis
problem, which happens to be even harder and is not as
well understood.12 It will probably require the develop-
ment of ever more powerful techniques and ideas con-
necting distributed and parallel computing with logic
and verification-like methods.

on Scenario-BaSeD Programming
The material in the “Some Evidence of Feasibility:

Scenario-Based Programming” sidebar is not imagi-
native—it is real work that has been done over the
past nine years jointly with a group of greatly tal-
ented colleagues and students. When compared to the
grandiose spirit of the previous comments, however, it
is partial, fragmented, and rather narrow. For exam-
ple, it is restricted to programming the reactive and
interactive dynamics of sets of objects, and it doesn’t
attempt to deal with any algorithmic or data-intensive
types of programming. Thus, even the potential scope
of the dream discussed here does not become clear
from it. Nevertheless, I maintain that it provides some
evidence that it might be worth thinking more seri-
ously about liberating programming along the lines I
have discussed here.

In particular, using the language of LSCs and the
Play-Engine discussed briefly in the sidebar, we can actu-
ally play in behavior similar to the cell phone example
described earlier, albeit far more rigidly, and we can then
play out the set of behaviors according to the “good citi-
zen” algorithm. And all this is done in an interobject,
rather than intraobject, fashion. In some of our more
recent work, we have used well-known techniques from
verification and AI, and this also adds to the feeling of
feasibility that it raises.8

The bottom line is this: I believe there is no reason
why we shouldn’t make great efforts to bring
widely researched and deeply worked-out ideas

in computer science to bear upon the most basic and
profound activity that involves computers, namely,
programming them and running the resulting pro-
grams. Once liberated, programmers will probably
have new kinds of work to do, possibly including the
need to set up specialized features of the new sophis-
ticated computational tools that would be running in
the background.

There is obviously a great deal more to programming
than specifying the reactive and interactive give and take
of objects. I can imagine some ways in which the ideas
described (or hallucinated about) here might be extended
to other kinds of programming, involving other kinds of
entities, such as classical algorithmics, data structures,
and databases. But I’d be the first to admit that there are
many more things that are relevant to all of this, about
which I don’t even know enough to dream of, let alone to
imagine how to do. Also, I am not saying that any of this
is easy, or even that it is clear that it can be done. Such is
the nature of dreams.

On the other hand, dreaming and sharing the dreams
with others has never been a mortal sin. ■

acknowledgments
I would like to express my deepest thanks to the many

dedicated and talented people whom I have had the
pleasure of working with on scenario-based program-
ming over the past few years. Special thanks go to Wer-
ner Damm, Rami Marelly, and Hillel Kugler, without
whose lengthy collaboration even the dreaming would
have been impossible. The other members and ex-mem-
bers of my group who were actively involved in devel-
oping the ideas described in the sidebar include Shahar
Maoz, Yoram Atir, Dan Barak, Asaf Kleinbort, Ron
Merom, Ouri Poupko, and Itai Segall. Thanks also to
Shahar Maoz and Moshe Vardi for comments on the
manuscript. This article was written during a visit to the
School of Informatics at the University of Edinburgh and
was supported by a grant from the EPSRC. The research
described in the sidebar was supported in part by the
John von Neumann Center for the Development of Reac-
tive Systems at the Weizmann Institute of Science, by a
Minerva grant, by a collaborative NIH grant, and by the
Israel Science Foundation.

references
 1. D. Harel, “From Play-In Scenarios to Code: An Achievable

Dream,” Computer, Jan. 2001, pp. 53-60. Also published
in Proc. Fundamental Approaches to Software Engineering
(FASE 00), LNCS 1783, Springer-Verlag, 2000, pp. 22-34.

 2. J. Backus, “Can Programming Be Liberated from the von
Neumann Style? A Functional Style and its Algebra of Pro-
grams,” Comm. ACM, vol. 21, no. 8, 1978, pp. 613-641.

 3. M. Zloof, “Query-by-Example: A Data Base Language,” IBM
Systems J., vol. 16, 1977, pp. 324-343.

 4. K. Apt, From Logic Programming to PROLOG, Prentice
Hall, 1996.

 5. C. Simonyi, The Death of Computer Languages, The Birth
of Intentional Programming, tech. report MSR-TR-95-52,
Microsoft Research, 1995.

 6. K. Marriott and P.J. Stuckey, Programming with Constraints:
An Introduction, MIT Press, 1998.

	 January 2008	 37

 7. R.E. Filman et al., Aspect-Oriented Software Development,
Addison-Wesley, 2004.

 8. D. Harel and R. Marelly, Come, Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine, Springer-
Verlag, 2003.

 9. D. Harel and A. Pnueli, “On the Development of Reactive
Systems,” Logics and Models of Concurrent Systems, K.R.
Apt, ed., NATO ASI Series, vol. F-13, Springer-Verlag, 1985,
pp. 477-498.

 10. A. Pnueli and R. Rosner, “On the Synthesis of a Reactive
Module,” Proc. 16th ACM Symp. Principles of Programming
Languages, ACM Press, 1989, pp. 179-190.

 11. E.M. Clarke, O. Grumberg, and D.A. Peled, Model Checking,
MIT Press, 2000.

 12. M.Y. Vardi, “From Verification to Synthesis,” presentation,
2006 (in PostScript); www.cs.rice.edu/~vardi/papers/fmco06.
ps.gz.

David Harel is the William Sussman Professor in the Depart-
ment of Computer Science and Applied Mathematics at the
Weizmann Institute of Science. Harel invented statecharts,
coinvented live-sequence charts, and was a member of the team
that designed Statemate and Rhapsody. He also codeveloped
the play-in/play-out approach to scenario-based programming
and the Play-Engine. Recently, he has also been working on
odor communication and biological modeling. He is a fellow of
the IEEE, the AAAS, and the ACM. Contact him at dharel@
weizmann.ac.il.

