Investigating the Design and Development of
Multitouch Applications

Kenrick Kin

ST NEFLELEL]

1]

h,
Y
4

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2012-233
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-233.html

December 11, 2012

Copyright © 2012, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Investigating the Design and Development of Multitouch Applications
by
Kenrick Chen-Kuo Kin
A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy
in
Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Maneesh Agrawala, Chair
Bjorn Hartmann

David Wessel

Fall 2012

Investigating the Design and Development of Multitouch Applications

Copyright 2012
by
Kenrick Chen-Kuo Kin

Abstract

Investigating the Design and Development of Multitouch Applications
by
Kenrick Chen-Kuo Kin
Doctor of Philosophy in Computer Science
University of California, Berkeley
Maneesh Agrawala, Chair

Multitouch is a ubiquitous input technique, used primarily in mobile devices such as phones
and tablets. Larger multitouch displays have been mostly limited to tabletop research
projects, but hardware manufacturers are also integrating multitouch into desktop work-
stations. Multitouch input has several key differences from mouse and keyboard input that
make it a promising input technique. While the mouse is an indirect and primarily uni-
manual input device, multitouch often supports direct-touch input and encourages bimanual
interaction. Multitouch also supports the use of all ten fingers as input, providing many
more degrees of freedom of input than the 2D mouse cursor.

Building multitouch applications first requires understanding these differences. We pre-
sent a pair of user studies that contribute to the understanding of the benefits of direct-touch
and bimanual input afforded by multitouch input. We then discuss how we leverage these
benefits to create multitouch gestures for a professional content-creation application run on
a large multitouch display. The differences between multitouch and mouse input also greatly
affect the needs of an application developer. We lastly present a declarative multitouch
framework that helps developers build and manage gestures that require the coordination of
multiple fingers.

In our first study, users select multiple targets with a mouse and with multitouch using
one finger, two fingers (one from each hand), and any number of fingers. We find that the
fastest multitouch interaction is about twice as fast as the mouse for selection. The direct-
touch nature of multitouch accounts for 83% of the reduction in selection time. Bimanual
interaction, using at least one finger on each hand, accounts for the remaining reduction.
To further investigate bimanual interaction for making directional motions, we examine two-
handed marking menus, bimanual techniques in which users make directional strokes to select
menu items. We find that bimanually coordinating directional strokes is more difficult than
making single strokes. But, with training, making strokes bimanually outperforms making
strokes serially by 10-15%.

Our user studies demonstrate that users benefit from multitouch input. However, little
work has been done to determine how to design multitouch applications that leverage these

benefits for professional content-creation tasks. We investigate using multitouch input for
a professional-level task at Pixar Animation Studios. We work with a professional set con-
struction artist to design and develop Eden, a multitouch application for building virtual
organic sets for computer-animated films. The experience of the artist suggests that Eden
outperforms Maya, a mouse and keyboard system currently used by set construction artists.
We present a set of design guidelines that enabled us to create a gesture set that is both
easy for the artist to remember and easy for the artist to perform.

Eden demonstrates the viability of multitouch applications for improving real user work-
flows. However, multitouch applications are challenging to implement. Despite the differ-
ences between multitouch and mouse input, current multitouch frameworks follow the event-
handling pattern of mouse-based frameworks. Tracking a single mouse cursor is relatively
straightforward as mouse events are broken sequentially into the order in which they must
occur: down, move, and up. For multitouch however, developers must meticulously track the
proper sequence of touch events from multiple temporally overlapping touch streams using
disparate event-handling callbacks. In addition, managing gesture sets can be tedious, as
multiple gestures often begin with the same touch event sequence leading to gesture conflicts
in which the user input is ambiguous. Thus, developers must perform extensive runtime
testing to detect conflicts and then resolve them.

We simplify multitouch gesture creation and management with Proton, a framework that
allows developers to declaratively specify a gesture as a regular expression of customizable
touch event symbols. Proton provides automatic gesture matching and the static analy-
sis of gesture conflicts. We also introduce gesture tablature, a graphical gesture notation
that concisely describes the sequencing of multiple interleaved touch events over time. We
demonstrate the expressiveness of Proton with four proof-of-concept applications. Finally,
we present a user study that indicates that users can read and interpret gesture tablature
over four times faster than event-handling pseudocode.

Multitouch applications require new design principles and tools for development. This
dissertation addresses the challenges of designing gestures and interfaces that benefit from
multiple parallel touch input and presents tools to help developers build and recognize these
new multitouch gestures. This work serves to facilitate a wider adoption of multitouch
interfaces. We conclude with several research directions for continuing the investigation of
multitouch input.

To my parents, June and C.C. Kin, for their everlasting support.

Contents

Contents

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3
1.4

Evaluating Direct-Touch and Bimanual Input
Designing a Multitouch Application
Developing Multitouch Applications
Wider Adoption of Multitouch

2 Related Work

2.1
2.2

2.3
24

2.5
2.6

Direct-Touch Input
Bimanual Interaction
2.2.1 Direct-Touch & Bimanual Target Selection
Many Degrees of Freedom of Input
Touch Attribute Utilization
2.4.1 Trajectory
2.4.2 Touch Shape
2.4.3 Hand and User Identification
Multitouch Applications
Multitouch Frameworkso
2.6.1 Modeling Input with State Machines & Formal Languages
2.6.2 Multitouch Event-Handling
2.6.3 Describing Gestures Declaratively

3 Selecting Targets with Multiple Direct Touches

3.1

3.2

Multitarget Selection Experiment
3.1.1 Participants and Apparatus
3.1.2 Task and Experiment Design,
Results

i

ii

vi

xi

U O = W =

© 00 00 3 I

10
10
11
11
12
12

3.3 Discussion
3.3.1 Design Guidelines o
3.3.2 Limitations

3.4 Conclusion

Drawing Directional Strokes Bimanually for Menu Selection

4.1 Related Work oo
4.2 Designing Two-Handed Marking Menus
4.2.1 Two-Handed Simultaneous Marking Menus (2HS)
4.2.2 Two-Handed Ordered Marking Menus (2HO)
4.3 User Study 1: Comparison of One- and Two-Handed Marking Menus
4.3.1 Participants and Apparatus L.
4.3.2 Taskand Stimuli oo oL
4.3.3 Study Design
4.4 Results o
4.4.1 Total Time
4.4.2 Reaction Time
443 Movement Time Lo
4.4.4 Accuracy
4.4.5 4-2 Layout Stroke Groupings
4.4.6 82 Layout Stroke Groupings
4.4.7 Temporal Overlap
4.4.8 Starting Hand for Two-Handed Ordered
4.4.9 Single Stroke Direction 0oL
4.5 DIScussiono
4.6 User Study 2: Longitudinal Evaluation
4.6.1 Longitudinal Results 0oL
4.6.2 Longitudinal Discussion
4.6.3 Longitudinal Study: 82 Menu Layout
4.7 Design Guidelineso
4.8 Display Menu Items for Novice Users
4.8.1 Hierarchical Display Menu
4.8.2 Full-Breadth Display Menu
4.9 Applications
4.9.1 Dual-Joystick Navigation
4.9.2 Text Editing
4.9.3 Falling Blocks Game for Training Novice Users
4.10 Conclusion

Designing a Professional Multitouch Application
5.1 Organic Set Construction

5.2 Eden

il

v

5.2.1 Design Principleso 61
5.2.2 Object Manipulation 63
5.2.3 Camera Control 65
5.2.4 Adding Objects 66
5.2.5 Additional Commands 67
5.3 Qualitative Evaluation 68
5.3.1 Apparatus 69
5.3.2 Veteran User Experience 69
5.3.3 New User Experience 70
5.4 Lessons Learned 71
5.5 Extensionso e 72
5.6 Conclusion 73
Representing Multitouch Gestures as Regular Expressions 74
6.1 A Motivating Example 76
6.2 Using Proton 78
6.2.1 Representing Touch Events 78
6.2.2 Gestures as Regular Expressions 78
6.2.3 Gestures with Multiple Touch Attributes 80
6.2.4 Gesture Tablature 80
6.2.5 Static Analysis of Gesture Conflicts 82
6.3 Implementation 83
6.3.1 Stream Generator 83
6.3.2 Gesture Matcher 84
6.3.3 Gesture Picker 85
6.3.4 Splitting the Touch Event Stream 86
6.3.5 Tablature to Expression Conversion 87
6.3.6 Static Analysis Algorithm 87
6.4 Custom Attributes 88
6.4.1 Direction Attribute L 89
6.4.2 Pinch Attribute 90
6.4.3 Touch Area Attribute 91
6.4.4 Finger Orientation Attribute 92
6.4.5 Screen Location Attribute 0. 92
6.4.6 Designing Custom Attributes 93
6.5 Timing 94
6.6 Touch Group Permutations 95
6.7 Applications 96
6.7.1 Application 1: Shape Manipulation 96
6.7.2 Application 2: Sketching L 98
6.7.3 Application 3: EdgeWrite oL 99

6.7.4 Application 4: Pongo 100

6.8 User Study

6.8.1 Part 1: Basic Touch Event Sequences

6.8.2 Part 2: Trajectory Gestures

6.8.3 Qualitative Results L

6.8.4 Discussion
6.9 Conclusion .

7 Conclusions and Future Work
7.1 Contributions,

7.2 Future Work

Bibliography

101
101
103
104
104
104

106
106
107

109

List of Figures

1.1

3.1
3.2

3.3

3.4

3.5

3.6

4.1

4.2

4.3
4.4

A professional set construction artist uses a multitouch interface to build a virtual
set for a computer-animated film. 0oL

Our multitouch workstation.
Top: Conceptual layout of the multitarget selection task. Bottom: Screenshot
of home positions and screenshot of task. Text in left screenshot reads: “Press
green squares to begin trial.”o
Average total selection times of the four input methods as a function of number
of targets. The standard error bars are shown.
Average miss rate per input method, with standard error bars.
Number of uses per finger type across participants in parentheses. Distinct colors
denote distinct participants. The dark and light hues correspond to the right and
left hand contributions respectively.00
Proportion of time users spent with different number of fingers simultaneously in
contact with the display surface. L.

Using a two-handed ordered marking menu, the left thumb strokes to select “Text
Attributes” and then the right thumb selects “Bold” to modify the sentence. With
a two-handed simultaneous marking menu, users draw both strokes at the same

Left: With the two-handed simultaneous marking menu, users can draw pairs
of strokes simultaneously. Right: With the two-handed ordered marking menu,
users alternate drawing strokes between hands. The identity of the initiating hand
provides an additional bit of information, doubling the number of accessible menu
items. . . .o e e
The Fingerworks iGesture multitouch pad.
Example stimuli for the two-handed simultaneous (2HS) and two-handed ordered
(2HO) conditions. Arrows appear in separate columns to indicate the hand that
should draw the stroke. Pairs of arrows in the same row indicate strokes that
must be drawn simultaneously. Participants must draw strokes in order from top
to bottom. In the one-handed conditions (not shown), the stimuli only contain
arrows in either the left or right column.

vi

4.5
4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

Screenshot of experimental setup with feedback given after a successful trial. . .
Average times (with standard error bars) for each menu technique and menu
layout on the iPod Touch.
Average times (with standard error bars) for each menu technique and menu
layout on the iGesture.
Average accuracies (with standard error bars and baseline value of 70%) for each
menu technique and menu layout on the iPod Touch.
Average accuracies (with standard error bars and baseline value of 70%) for each
menu technique and menu layout on the iGesture.
Average total times for horizontal or vertical stroke groupings for the 4-2 layout
using the iPod Touch (Left) and the iGesture (Right). Standard error bars are

Average total times for on- or off-axis stroke groupings for the 8-2 layout using
the iPod Touch (Left) and the iGesture (Right). Standard error bars are shown.
First stroke average movement (with standard error bars) times using the iPod
Touch for the 8-2 layout.o
First stroke average movement (with standard error bars) times using the iGesture
for the 8-2 layout. L
Average time and accuracy (with standard error bars) for menu techniques 1HR
and 2HS and layouts 4-2 and 4-4, across five days. The baseline value of the
accuracy graph is 70%.
Average total time (with standard error bars) per stroke pair for the 4-2 layout.
For 2HS, pairs of strokes that are bilaterally symmetric or share the same direction
(light blue) are 18% faster to draw than the other pairs.
Average total time and accuracy (with standard error bars) for the first and last
blocks for the 8-2 layout. The baseline value of the accuracy graph is 70%. . . .
Average accuracy (with standard error bars) for all stroke pairs in the 8-2 layout
using the 2HS technique. The pairs where the left stroke is parallel to the SW-NE
axis or the right stroke is parallel to the SE-NW axis are highlighted in orange.
Note that standard error bars have zero radius when all three participants had
the same accuracy. L
Average times and accuracy (with standard error bars) for menu techniques 1HR
and 2HS and menu layout 8-2, across four blocks of trials. The accuracy graph’s
baseline value is 70%.
Average total time (with standard error bars) for all stroke pairs in the 8-2 layout
using the 1HR and 2HS technique.,
Average accuracy for all stroke pairs in the 8-2 layout using the 1HR and 2HS
technique. For 2HS, the pairs where the left stroke is parallel to the SW-NE axis
or the right stroke is parallel to the SE-NW axis are highlighted in orange. Note
that standard error bars have zero radius when all three participants had the
SAME ACCUTACY. .« « « « v v e e e e e e e e e e e

vil

31

4.21

4.22

4.23

5.1

5.2
5.3

5.4

9.5

5.6
5.7

0.8

5.9

Left: Hierarchical Display — The left hand explores the parent menu items by
dragging through menu items, and the child menu items continuously update for
the right hand. Right: Full-Breadth Display — The entire menu space is displayed,
and the left hand chooses the four-item cluster, while the right hand chooses the
item within a cluster. oL
In this mine disposal game, the user moves a robot using two joysticks. The
left joystick controls movement and the right joystick controls orientation. Two-
handed marking menus invoke commands as shown in the four screenshots and
can be executed anywhere on the screen.
In the Falling Blocks game, the user must destroy each block by drawing the
corresponding strokes. Left: Novice Mode — Strokes are shown. Right: Expert
Mode — No strokes are shown.

Constructing a set with Maya: (a) The set construction artist creates a model
catalog by lining up the models he plans on using away from the terrain. (b-c)
He then makes duplicates of the objects and translates them to the region of the
terrain where he is constructing the set. (d-f) To translate an object, he first
selects the object, then switches to translation mode with a hotkey, and finally
picks and drags the arrow manipulator. (g) He translates, rotates, and scales
objects one by one until he completes the set.
An organic set in Pixar’s Up. Copyright Disney/Pixar.
The interface of Eden consists of the main content view, a drawer containing the
model catalog and stroke pad overlaid on the left, and two matching columns of
buttons. L L
Constructing a set with Eden. (a) The set construction artist starts with the
empty terrain. (b-c) Using the model catalog in the drawer, the artist can touch
one finger on the model, and with a second hand touch the locations for where
to place copies of the model. He taps several times on the boulder to quickly
add nine bromeliads. (d) He makes additional adjustments to each bromeliad
by performing an arcball rotation for example. (e) He continues adding and
manipulating objects until the set is complete.
(a) One-touch using a single finger. (b) Two one-touches using two fingers. (c)
Conjoined touch using two fingers next to each other.
Set of object manipulation gestures. L
To add an object using throw-and-catch, the first finger selects the model and
the second finger taps the position to placeit.
(a) One-touch to invoke quasimode. (b) Swipe on button triggers secondary
action. (c) Conjoined touch to make mode explicit.
(a) Stroke pad. Drawing a stroke executes the corresponding command. (b)
Stroke binding panel. The left panel displays the stroke bound to the highlighted
command in the right panel. The artist can choose his own stroke by drawing a
new stroke in the left panel. L

viii

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10

6.11

Proton represents a gesture as a regular expression describing a sequence of touch
events. Using Proton’s gesture tablature, developers can design a multitouch
gesture graphically by arranging touch sequences on horizontal tracks. Proton
converts the tablature into a regular expression. When Proton matches the ex-
pression with the touch event stream, it invokes callbacks associated with the
EXPIESSION. & v v v v v v e e e e e e e e e e e e e e
Regular expressions for translation, rotation and scale gestures. The thumbnails
illustrate the user’s actions corresponding to the colored symbols for the scale
gesture. oL e
Combining the hit-target and direction attributes, the developer can specify a
gesture to translate a shape (denoted as ‘s’) with varying degrees of specificity:
(a) north only, (b) north and south only, (c¢) in any direction.
(a) Tablature for a two-touch rotation gesture. (b) Tablature for a strikethrough
delete gesture. (c¢) Tablature for double tap zoom.
The Proton architecture. The responsibilities of the application developer are
shown in blue.
Top: Proton generates a touch event stream from a raw sequence of touch points
given by the hardware. (a) The user touches a shape, (b) moves the touch and
(c) lifts the touch. The gesture matcher renumbers unique 77ps produced by
the stream generator to match the gesture expressions. Bottom: The gesture
matcher then sequentially matches each symbol in the stream to the set of gesture
expressions. Translation, rotation, and scale all match when only a single finger
is active, (a) and (b), but once the touch is lifted only translation continues to
match, (¢).
Proton converts the developer-defined regular expressions to finite-state machines
for gesture matching.
Our tablature conversion algorithm sweeps left-to-right and emits symbols each
time it encounters a touch-down or touch-up node (vertical dotted lines). We
distinguish three cases: (a) non-aligned nodes; (b) aligned touch-up nodes; (c)
aligned touch-down nodes. oL
Top: The intersection of NFAs for the expressions abbxc and abxd does not exist
because the start state 11 cannot reach the end state 43. Bottom: Treating states
22 and 32 each as end states, converting the NFAs to regular expressions yields a
and abbx. The longest common prefix expression is the union of the two regular
EXPIeSSIONS. v v e e
(a) The space of directions is divided into eight ranges representing the four
cardinal and four ordinal directions. (b) The vector formed by the last two
positions is binned to the closest direction. (c¢) An L-shaped gesture generates
south (‘S’) symbols then east (‘E’) symbols.
Proton continuously tracks the trajectory of the second touch, allowing the devel-
oper to provide continuous feedback depending on if the touch moves east-west
(scale in x-axis) or north-south (scale in y-axis).

X

6.12 (a) Touches are assigned a ‘P’ when on average the touches move towards the
centroid, an ‘S’ when the touches move away from the centroid, and an ‘N’ when
they stay stationary. (b) A two-touch gesture that zooms out on a pinch and
zooms inon aspread.

6.13 (a) A touch with small (‘sm’) area translates only the topmost card of a stack.
(b) A touch with large (‘lg’) area translates the entire stack.

6.14 (a) The angle of the major axis of a touch is binned into three orientation values.
(b) The dial menu (‘d’) uses orientation to choose the background color of an
application. L.

6.15 To simulate hand identification, touches beginning on the left side belong to
the left hand and touches beginning on the right side belong to the right hand.
An ordered two-handed marking menu can be described by adding the direction
attribute. L L

6.16 (a) Shorthand for specifying timing in tablature. (b) Novice marking menu using timing
notation to specify a touch hold. oL

6.17 The shape manipulation application includes gestures for 2D layout, canvas con-
trol, and shape addition and deletion through quasimodes.

6.18 (a) In the sketching application’s palette, the user adjusts brush parameters
through predefined widgets. (b) Aligned touch-up nodes for the swipe tablature
generate all six touch-up sequences.

6.19 EdgeWrite gestures change hit-targets multiple times within a touch track. The
gesture for the letter ‘b’ isshown.

6.20 In this Pong game, the touch stream is split so one gesture matcher can process
touches from the left player and a second gesture matcher can process touches
from the right player. Both gesture matchers use the same gesture for controlling
the paddle (‘p’).

6.21 In Part 1, the participant is shown a gesture and the participant must identify
the matching video.

6.22 Screenshots of a video depicting a two-touch gesture for linking two nodes.

6.23 The average time to completion for identifying a gesture in Part 1 and Part 2.
Standard error bars are shown. L

6.24 In Part 2, the participant is shown a gesture and must identify the matching
trajectory. L L

List of Tables

3.1

4.1
4.2
4.3
4.4

The rows correspond to number of targets and the columns correspond to input
method. Each table contains the average time to select the corresponding number
of targets using the corresponding input method. Standard errors are noted in
parentheses. The fastest selection time per number of targets is given in bold.
The last row contains the average completion time for each input condition.

Average total times in milliseconds and standard errors in parentheses.
Average reaction times in milliseconds and standard errors in parentheses.
Average movement times in milliseconds and standard errors in parentheses.
Average accuracy and standard errors in parentheses.

X1

Xil

Acknowledgments

First and foremost I would like to thank my advisor, Maneesh Agrawala, whose support and
guidance made this dissertation possible.

I would like to thank my fellow Soda denizens and BiD compatriots who made my stay
at Berkeley both intellectually fulfilling and memorable. In particular I would like to thank
Anuj Tewari, Floraine Berthouzoz, Lora Oehlberg, Nicholas Kong, Nuttapong Chentanez,
Robert Carroll, Robin Held, and Wesley Willett.

In addition to my advisor, I would like to thank several Berkeley faculty members who
have influenced my research ideas. Above all, I would like to thank Bjérn Hartmann who
has played an integral role in defining my research path. Carlo Séquin, David Wessel, James
O’Brien, John Canny, and Jonathan Shewchuk have inspired me with their passion and work
in Computer Graphics and Human-Computer Interaction.

Working at Pixar Animation Studios for five years was a dream and a privilege. I would
like to thank Tony DeRose for giving me the opportunity to spearhead the multitouch effort.
In addition, I would like to thank the brilliant research interns Bjorn Bollensdorff, Craig
Schroeder, Dominik Késer, Justin Solomon, and Ralph Wiedemeier for their suggestions
and contributions to the multitouch project. And of course, I would like to thank Tom
Miller, who took the leap of faith in actually using multitouch input to build virtual sets for
computer-animated films.

Lastly, I would like to thank my friends and family who encouraged me to go outside
and breathe fresh air every now and then. I would like to thank my sister Karin for catching
typos and my brother Kevin for providing me with dining hall food.

Chapter 1

Introduction

The mouse was introduced in 1963 [32] and in conjunction with the keyboard, mouse and
keyboard interfaces are still the dominant means through which humans interact with com-
puters today. Although the utility of the mouse is undeniable, as it is has long been the
primary input device to graphical user interfaces, users are limited by the single mouse cursor
through which they manipulate digital content. To increase the functionality of the mouse,
users often rely on mode switching to change how the mouse input will affect the application.
In addition, a single mouse cursor provides just two spatial degrees of freedom, so tasks that
requires manipulating more than two spatial parameters must be broken up into multiple
steps. Furthermore, with a single cursor, users must make long traversals between spatially
distant elements.

Multitouch interaction is a newly popularized form of interaction that frees users from
the constraint of a single point of input. Multitouch allows users to apply any number of
two-dimensional touches directly as input to a device with a co-located display. Although
multitouch is old in its conception, dating as far back as 1982 [88], only in the last decade
have large multitouch displays become commercially available. These include capacitance-
based displays [30, 89, 114], infrared camera-based displays [47, 91, 108], and optical-based
displays that do not rely on cameras [90, 94]. These devices were largely designed with multi-
user interaction in mind. Large displays that detect simultaneous input are especially useful
for multiple users to collaborate on the same digital workspace [96, 119, 142].

However, widespread adoption of multitouch did not occur until its use in mobile devices
for individual users. Modern mobile phones and tablets [6, 44, 93] have adopted multitouch
input as their primary input technique. Removing physical buttons allows more space for a
larger display on a mobile device. The co-located display and touch surface supports direct-
touch input, which removes the need for an external pointing device. The added degrees
of freedom of multiple touches increase the gesture space to support gestures such as the
familiar two-touch pinch-to-zoom. Hardware manufacturers are also integrating multitouch
into desktop workstations [2, 108]. Multitouch displays for laptops and desktops are larger
than those of mobile devices, providing users with more screen space to more easily apply
touches with both hands.

CHAPTER 1. INTRODUCTION 2

Figure 1.1: A professional set construction artist uses a multitouch interface to build a virtual
set for a computer-animated film.

Multitouch input on a desktop workstation is a promising enhancement or alternative
to the traditional mouse and keyboard input. Consider the goal of creating a computer-
animated film. A common task is the positioning of 3D virtual objects, which is currently
performed using a mouse and keyboard interface such as Autodesk Maya [7]. Although ad-
vancements in graphics processing have made the rendering of 3D virtual scenes more efficient
in such tools, artists are still constrained by the two-dimensional spatial input of the mouse
when manipulating 3D content. For artists working on computer-animated films, multitouch
can increase their productivity. An artist can benefit from the efficiency of selecting objects
with direct-touch. Working bimanually, the artist can efficiently perform operations in par-
allel or interact with different portions of the screen simultaneously (Figure 1.1). Using the
many spatial degrees of freedom of input provided by multiple touch points, the artist can
specify and control many parameters of an operation simultaneously, reducing the need to
break an operation into multiple steps.

Ultimately, the promise of multitouch input are applications that increase user perfor-
mance for complex tasks. Thus, it is important to build on the understanding of multitouch

CHAPTER 1. INTRODUCTION 3

input, to investigate the design of multitouch gesture sets and applications, and to create
new tools that facilitate the development of multitouch applications.

1.1 Evaluating Direct-Touch and Bimanual Input

Multitouch input has several key differences from traditional mouse and keyboard input.
Multitouch is often a direct-touch input, which allows the user to target a graphical object by
touching it on the display. The mouse on the other hand is an indirect pointing device, so the
user must position and track a digital cursor to target an object. Sears and Shneiderman [120]
have shown that direct-touch is faster than mouse input for target selection. In addition,
multitouch input allows the user to use up to all 10 fingers on both hands for targeting,
providing 20 degrees of spatial freedom, while the mouse controls only a single cursor with
two degrees of freedom.

Since touches can come from either hand, multitouch devices also support bimanual
interaction. Although mouse and keyboard devices also support bimanual interaction (e.g.,
typing or combining keyboard shortcuts with mouse manipulation), multitouch interaction
does not restrict one hand to discrete button pressing; both hands can directly interact
with the graphical objects on the display. The actions of two hands often overlap in time,
and the resulting parallelism can increase performance for tasks that require continuous
spatial manipulation of graphical objects [11, 22, 25]. Moreover, each hand can remain in
the proximity of the area of work it is responsible for, thereby reducing large-scale movements
that may be required in unimanual interactions [31].

The flexibility of being able to use any finger and combinations of fingers as input greatly
increases the available degrees of freedom of input over mouse and keyboard interfaces.
Certain multitouch hardware [47, 91, 114, 115, 133] even increases the space of available touch
parameters, adding attributes such as shape and pressure to the touch position provided by
default. The multitude of touch attributes increases the space of possible gestures that can
be performed by the user.

We build on research investigating direct-touch, bimanual, and multifinger input with
two user studies. We first investigate the performance of multitouch for target selection, a
simple and common task in graphical user interfaces. In Chapter 3 we present a multiselection
study [69] in which users are shown randomly placed targets on a large multitouch display
and then asked to select multiple targets with a mouse, one finger, two fingers (one from
each hand), and any number of fingers. We find that the fastest multitouch condition is
about twice as fast as the mouse-based workstation, independent of the number of targets.
Direct-touch with one finger accounts for an average of 83% of the reduction in selection
time. Bimanual interaction, using at least two fingers, one on each hand, accounts for the
remaining reduction in selection time. We find no significant difference between using any
number of fingers and using one finger from each hand for selection time.

Selecting targets using a finger from each hand is a bimanual interaction. We next con-
sider bimanual interaction with additional spatial movements by examining the performance

CHAPTER 1. INTRODUCTION 4

of two-handed marking menus [70] in Chapter 4. In a one-handed marking menu, the user
makes a sequence of directional strokes to select a menu item. Our two-handed marking
menus are bimanual techniques in which the user makes pairs of directional strokes, one
stroke with each hand, to select menu items. In one variant, the user draws both strokes
simultaneously. In the second variant, the user alternates the hand that draws the strokes.
We find that bimanually coordinating directional strokes is more difficult than making single
strokes. But, with training, making strokes bimanually outperforms making strokes serially
by 10-15%. We present several use cases of two-handed marking menus.

1.2 Designing a Multitouch Application

The performance benefits of multitouch input as demonstrated by our user studies make
multitouch applications a compelling enhancement to desktop workstations. Researchers,
however, have done little to determine whether multitouch is suited for professional-level
tasks. Professional digital content creators still use mouse and keyboard workstations and
thus have to perform many sequences of steps to achieve a desired goal. These tasks are
often repetitive. If multitouch can improve even a small part of the workflow, there can be
significant overall gains in production.

Due to the differences between multitouch and mouse and keyboard input, designing mul-
titouch applications requires different considerations than mouse and keyboard applications.
Designing gestures for multitouch is more challenging than for the mouse because multitouch
gestures require the user to coordinate the actions of two hands and individual fingers in-
stead of a single mouse cursor. The developer must properly map each potentially complex
gesture to an operation such that it is easy to perform and learn. Furthermore, each gesture
must be well integrated with and distinguishable from a number of other gestures that make
up the gesture set of the application. In Chapter 5, we present a set of design principles and
lessons learned from designing the gesture set of a multitouch tool that contributes to the
creation of computer-animated films at Pixar Animation Studios. In particular, we devel-
oped Eden [73], a multitouch application for building virtual organic sets. Set construction
is an integral step of the computer animation pipeline, in which artists arrange and place
virtual 3D objects to create environments for computer-animated films.

Working with a professional set construction artist, we leverage direct-touch, bimanual,
and multifinger interaction afforded by multitouch input to design a set of gestures tailored
for organic set construction. In particular, we map multitouch gestures to 3D object ma-
nipulation and camera control operations. We evaluate the effectiveness of multitouch input
by comparing Eden to Maya [7], a mouse and keyboard interface currently used by set con-
struction artists today. The positive experiences of two set construction artists suggest that
Eden outperforms Maya and multitouch can improve a professional workflow.

CHAPTER 1. INTRODUCTION d

1.3 Developing Multitouch Applications

When building Eden we found that multitouch applications are challenging to implement
with current frameworks. Much like frameworks for mouse-based applications, current mul-
titouch frameworks are event-based and require developers to detect gestures by handling
touch events. Multitouch application developers implement touch-down, touch-move, and
touch-up event handlers, which are analogous to mouse-down, mouse-move, and mouse-up
event handlers. While there is a logical order of events from mouse-down to mouse-move to
mouse-up for a single mouse cursor, multitouch application developers must manage touch
events generated from many fingers pressing and lifting up and making temporally overlap-
ping movements on the multitouch device. Developers must then meticulously manage state
across callbacks in order to detect the proper interleaving of touch events generated from
different fingers. In addition, multitouch gestures often begin with the same touch event
sequence, which leads to gesture conflicts in which multiple gestures can match the same
user input. Developers must perform extensive runtime testing to identify when multiple
gestures conflict and resolve them such that when a user performs a gesture, the application
executes the expected command.

In Chapter 6 we present Proton [71, 72], a multitouch framework designed to improve mul-
titouch gesture creation and management. Proton allows developers to declaratively specify
a multitouch gesture as a regular expression describing a sequence of touch event symbols.
Developers can extend these touch event symbols by adding custom touch attributes to the
symbols, such as touch hit-target or touch direction, thereby increasing the expressiveness
of multitouch gesture regular expressions. Given these expressions, Proton automatically
detects when user input matches the gesture descriptions and also statically analyzes the
gestures to detect gestures conflicts. In addition, we introduce gesture tablature, a graphical
notation for specifying gestures.

We demonstrate the flexibility of Proton with several example attributes and their ap-
plications. We validate Proton with a series of example applications: a 2D set construction
application, a sketching application, a single-stroke character entry technique [140], and a
two-player Pong game. We also conduct a user study that indicates that users can read and
interpret gesture tablature 2.0-2.1 times faster than gesture regular expressions and 4.2-4.7
times faster than event-handling pseudocode.

1.4 Wider Adoption of Multitouch

Multitouch technology has become widely adopted for mobile use and larger multitouch dis-
plays have become increasingly available. Our user studies contribute to the overall under-
standing of multitouch input, helping to inform the design of applications for these devices.
Eden, our multitouch set construction application, suggests that there is still room for the
workstation of professional content creators to evolve and improve. The design guidelines we
present provide a starting point for the development of new multitouch interfaces for these

CHAPTER 1. INTRODUCTION 6

users. Proton, our novel declarative multitouch framework, supports the developer in the
creation and management of large gesture sets. By facilitating the development of multi-
touch applications and introducing good guidelines for building gestures, our work serves to
propel the adoption and effectiveness of multitouch interfaces.

This dissertation is partially based on papers previously published in CHCCS/SCDHM and ACM conference
proceedings and journals; I am the primary author on all publications. The multitarget selection study in
Chapter 3 was published in GI 2009 [69]; the two-handed marking menu techniques in Chapter 4 were
published in TOCHI 2011 [70]; Eden in Chapter 5 was published in CHI 2011 [73], and Proton in Chapter
6 was published in CHI 2012 [72] and UIST 2012 [71].

Chapter 2

Related Work

Many areas of multitouch research have contributed to the creation of multitouch applica-
tions. We first cover prior work that examines the direct-touch and bimanual properties of
multitouch input that distinguish multitouch input from mouse and keyboard input. In addi-
tion, we discuss multitouch research that use the many degrees of freedom of input to perform
complex tasks like three-dimensional object manipulation, a task commonly performed when
making computer-animated films. Some multitouch hardware detect various touch attributes
in addition to touch position. We survey how researchers have used these additional degrees
of freedom to create new multitouch gestures. We then discuss research that explores the
design of multitouch applications and large gesture sets. Finally, we summarize the different
types of multitouch frameworks available for developing multitouch applications.

2.1 Direct-Touch Input

Multitouch hardware with a co-located display supports direct-touch input. Early touch-
screens also supported direct-touch, but for a single point of contact. Studies comparing
touchscreen interactions to mouse-based interactions in a selection task found speed advan-
tages for the touchscreen [62, 105]. However, occlusion due to the fingers and imprecision
in locating touchpoints also reduced accuracy of the direct-touch input. Sears and Shnei-
derman [120] investigated the effect of target size on speed and accuracy. They found that
targets of size 0.64 cm in width or larger were faster to select with a touchscreen than a
mouse, while error rates were roughly equal in both conditions. At a target size of 1.28 cm
users made 66% fewer errors with the touchscreen than with the mouse.

2.2 Bimanual Interaction

Guiard, in his seminal work on the Kinematic Chain Model [45, 46], assigned different,
asymmetric roles to the hands. The non-dominant hand sets the frame of reference in which
the dominant hand executes the primary action. Empirical studies have shown the promise

CHAPTER 2. RELATED WORK 8

of two hands working together when they are assigned asymmetric roles [12, 22, 53, 59].
Other studies have also shown the potential for increased performance when assigning both
hands similar, symmetric roles [11, 25, 80, 81]. In addition, researchers have shown that for
target selection tasks there is significant overlap, or parallelism in movement between the
hands [29, 66, 67]. These studies have informed the design of a large variety of bimanual
interaction techniques [14, 17, 51, 52, 106, 142].

2.2.1 Direct-Touch & Bimanual Target Selection

With the advent of multitouch workstations that offer both direct-touch and bimanual in-
teraction, a few groups have begun studying these two factors in combination. Barnert [13]
designed an asymmetric task, where users matched a template cube by specifying the base of
the cube with one hand and the height of the cube with the other hand. Barnert found that
users are better at target selection and dragging using either one or two mice than using one
or two hands on a multitouch table. However, Barnert’s task required single pixel-accuracy
which Sears and Shneiderman [120] showed to be very difficult for direct-touch devices. It
is unlikely that Barnert’s results would apply to selection tasks with larger targets.

Forlines et al. [37] conducted a pair of experiments that compared target selection on
a mouse workstation and a multitouch workstation. In the first study they focused on
unimanual interaction and showed that in a single-target selection task with targets of size
1.92 ¢m and larger, direct-touch offers modest speed advantages over the mouse. However,
the direct-touch device also produced twice the error rate of the mouse and therefore Forlines
et al. recommended using a mouse for single-target selection. In the second experiment they
studied a symmetric bimanual selection and docking rectangle resizing task. Users first
selected target handles at diagonally opposite corners of a rectangle using both hands and
then dragged those handles onto the corners of a differently sized target rectangle. In this
task they found direct bimanual multitouch to take 0.64 times as long as using a pair of
mice. However error rates for the target selection part of the task were twice as large in
the multitouch condition. Nevertheless Forlines et al. recommend using direct multitouch
interaction for such symmetric bimanual tasks because of the speed advantages.

Because Forlines et al. did not consider unimanual and bimanual conditions together in
the same task, their studies could not directly compare the performance advantages due to
the multiple input capabilities of a multitouch display versus those only due to direct-touch.
Our multitarget selection study in Chapter 3 fills this gap by considering both interaction
dimensions—indirect/direct and unimanual/bimanual—together. We also consider the per-
formance of multifinger input.

2.3 Many Degrees of Freedom of Input

The limited degrees of freedom of the mouse have motivated the development of input de-
vices with more degrees of freedom, such as the Data Glove [150], the Bat [131], GlobeF'ish

CHAPTER 2. RELATED WORK 9

and GlobeMouse [40], and the commercially available SpaceNavigator [1]. Multitouch work-
stations also provide many input degrees of freedom that can be leveraged for specifying an
application’s operations and their many parameters.

A common task that requires the manipulation of many degrees of freedom is 3D object
manipulation. Hancock et. al. [48], Reisman et al. [113], and Martinet et. al. [84] investi-
gated using multitouch for 3D object manipulation. They used the number and locations of
the touches to set the object manipulation operation (translation, rotation, and scale) and
mapped the motion of the touches to the corresponding parameters. Cohé et al. designed
a multitouch widget [26], with which the user specifies the object manipulation operation
by directly touching specific targets on the widget. Cardinaels et al. [24] also designed mul-
titouch gestures for manipulating objects in an application for conceptualizing scenes for
television productions. In Chapter 5 we also leverage direct-touch and multifinger input to
design object manipulation gestures for Eden, an application designed for producing virtual
environments for computer-animated films.

2.4 Touch Attribute Utilization

Modern multitouch hardware support gestures that depend on the touch positions provided
by the hardware. In addition to touch position, certain multitouch hardware can detect other
attributes such as touch shape and touch identity. Researchers have used these additional
touch attributes to create more diverse gestures. We survey representative techniques that
utilize common hardware supported touch attributes, including touch positions for creating
trajectory-dependent gestures (Section 2.4.1), touch shape for increasing the design space of
gestures (Section 2.4.2), and touch identity for tracking track hands and users in multi-user
applications (Section 2.4.3).

2.4.1 Trajectory

Trajectory recognition systems consider touch positions over time. Researchers have de-
veloped trajectory recognitions systems that rely on comparisons to demonstrations [116,
139], and on regular expression matching to a string representation of a gesture [141]. These
recognizers can only classify trajectory at the end of a gesture and thus cannot provide
recognition feedback as the user performs the gesture. In contrast, some systems detect
trajectory online, as the user performs the gesture, and thus are able to provide continuous
feedback. Bevilacqua et al. [15] use a hidden Markov model to perform gesture following and
Swigart [125] detects trajectory as a sequence of directions formed by the last two positions
of the touch. Our multitouch framework takes a similar approach to Swigart by allowing
developers to incorporate custom direction attributes into touch event symbols for trajectory
matching. Researchers have used touch trajectories to disambiguate widget selection [97],
implement multitouch marking menus [70, 82|, and detect stroke commands [5].

CHAPTER 2. RELATED WORK 10

2.4.2 Touch Shape

All multitouch devices detect the positions of touches, but many devices also detect touch
shape [47, 91, 114, 115, 133]. Researchers have used hand shape in multitouch applications to
distinguish between different operations based on analogies to real-world manipulations [23],
to control physics simulations [137], to constrain degrees of freedom for shape manipula-
tion [135], and to distinguish commands in multi-user applications [142]. From touch shape,
researchers have extracted touch area, which they have used to simulate applied pressure
when selecting and manipulating objects [14, 23]. Pressure-sensitive widgets designed for sty-
lus input can also be implemented using touch area [111]. Researchers have extracted touch
orientation from touch shape by fitting an ellipse to the shape and calculating the angle of its
major axis [27, 129]; they use orientation as an additional parameter for object manipulation
and command selection. Using Proton, developers can integrate touch area and touch ori-
entation into gesture expressions to detect and execute similar interaction techniques, which
we describe in Chapter 6.

2.4.3 Hand and User Identification

Most multitouch devices cannot distinguish the sources of touches, such as from which finger,
hand, or person the touch originated. Researchers have augmented multitouch systems with
additional cameras to track the identity of hands [33]. With hand identity, developers can
assign different gestures and roles to each hand, as promoted by Guiard’s Kinematic Chain
Model [45]. The DiamondTouch [89] table identifies users through capacitive coupling be-
tween the touch surface and a pad on each user’s chair. User identity has enabled researchers
to develop cooperative gestures for multiple users [96] and player tracking for multiplayer
games [35]. Proton can integrate hand and user identity into touch events.

2.5 Multitouch Applications

In addition to investigating the benefits of multitouch input and mapping touch attributes to
individual operations, researchers have also explored the design of complete multitouch ap-
plications. However, many of these applications primarily served as testbeds for multitouch
interaction design and were not designed for deployment to real users. For example, Wu
et al. [142, 143] developed a room planning application to investigate multi-user interaction
and an annotation application to investigate gesture design. Brandl et al. [20] developed a
sketching application to investigate touch and pen interaction. Researchers also deployed
applications designed for casual users outside of a lab setting, including a card game appli-
cation for a senior citizens center [41] and a large media display in a public city center [107].
They explored the social interactions between users due to these applications.

Few researchers have explored the use of multitouch for producing work in a professional
environment. One notable exception is the research by Wigdor et al. [134], which investigated
the long term use of a multitouch workstation for office-related tasks, such as replying to

CHAPTER 2. RELATED WORK 11

e-mail. However, the authors used multitouch as a mouse emulation device for pre-existing
mouse and keyboard interfaces. They did not redesign the application to better leverage
multitouch input. In contrast, we designed Eden (Chapter 5) from the ground up to leverage
multitouch input for a professional task.

Researchers have also recently examined user-defined gestures. Wobbrock et al. [138]
combined gestures designed by 20 end-users to create a gesture set for 22 commonly used
commands. Follow-up work by Morris et al. [95] found that users preferred gestures designed
by end-users and researchers over those designed by researchers alone, seemingly because
researchers proposed more physically and conceptually complex gestures than end-users.
Thus, it is important to involve the end-user in the design stages of a multitouch application.
We designed our gestures for Eden with the help of a veteran set construction artist, one of
our target users.

2.6 Multitouch Frameworks

While the utility of a multitouch application is dependent on its design, multitouch devel-
opers rely on developer tools for bringing such a design to fruition. Current multitouch
frameworks borrow heavily from mouse-based frameworks, but multitouch gestures have dif-
ferent recognition requirements. Multitouch application developers must track not only when
an individual finger touches down and lifts up from the device, but also the simultaneous
movement of multiple fingers on the device. They often track the progression of multitouch
gestures by managing state machines, a common way to track the progression of user input.
The regular expressions used by Proton, which we describe in Chapter 6, are closely related
to finite-state machines: regular expressions describe regular languages; finite-state machines
accept such languages [123]. In Section 2.6.1 we summarize prior research on modeling user
input as state machines and formal languages. In Section 2.6.2 we then describe related work
on multitouch event-handling and the declarative specification of multitouch gestures.

2.6.1 Modeling Input with State Machines & Formal Languages

Since Newman’s pioneering work on Reaction Handler [100], researchers have modeled user
interactions using formalisms such as state machines [4, 50, 54, 99], context-free gram-
mars [19, 57, 56] and push-down automata [104]. These formalisms have been used to specify
the user interactions of an application [19], to describe the context of an interaction [58, 121],
and to synthesize working interface implementations [104]. A recurring theme in early work is
to split user interface implementation into two parts: the input language (the set of possible
user interface actions); and the application semantics for those actions. The input language
is often defined using state machines or grammars; the semantics are defined in a procedural
language. Proton takes a conceptually similar approach: it uses regular expressions as the
underlying formalism for declaratively specifying sequences of touch events that comprise
a gesture. Callbacks to procedural code are associated with positions within the expres-

CHAPTER 2. RELATED WORK 12

sion. Proton goes beyond the earlier formalisms by also providing a static analyzer to detect
conflicts between gestures and a graphical notation to further simplify gesture creation.

2.6.2 Multitouch Event-Handling

With the recent rise of multitouch cellphones and tablet computers, hardware manufacturers
have created a variety of interaction frameworks [6, 44, 92] to facilitate application devel-
opment. These frameworks inherit the event-based callback [103] structure of mouse-based
GUI frameworks. While commercial frameworks usually support a few common interactions
natively (e.g., pinch-to-zoom), implementing a new gesture requires processing low-level
touch events. Open-source multitouch frameworks similarly require developers to implement
gestures via low-level event-handling code [28, 39, 49, 101, 124]. Lao et al. [79] presents a
state-transition diagram for detecting multitouch gestures from touch events. This diagram
serves as a recipe for detecting simple gestures, but the developer must still process the touch
events. Many frameworks are written for specific hardware devices. Kammer et al. [60] de-
scribe the formal properties shared by many of these frameworks. Echtler and Klinker [34]
propose a layered architecture to improve multitouch software interoperability; their design
also retains the event callback pattern. However, none of these multitouch frameworks give
developers a direct and succinct way to describe a new gesture.

2.6.3 Describing Gestures Declaratively

Researchers have used formal grammars to describe multitouch gestures. CoGesT [43] de-
scribes conversational hand gestures using feature vectors that are formally defined by a
context-free grammar. Kammer et al. [61] present GeForMT, a formal abstraction of mul-
titouch gestures also using a context-free grammar. Their grammars describe gestures at a
high level and do not provide recognition capabilities. Gesture Coder [83] recognizes mul-
titouch gestures with state machines, which are equivalent to regular expressions. While
Proton and Gesture Coder share a recognition approach, their interfaces for authoring ges-
tures differ significantly: developers demonstrate gestures in Gesture Coder; they author
gestures symbolically using tablatures and regular expressions in Proton.

In multitouch frameworks such as GDL [68] and Midas [117] developers declaratively
describe gestures using rule-based languages based on spatial and temporal attributes (e.g.,
number of touches used, the shape of the touch path, etc.). Because these rule-based frame-
works are not based on an underlying formalism such as regular expressions, it is difficult to
reason about gesture conflicts at compile time. The developer must rely on heavy runtime
testing to find such conflicts. In contrast to all previous techniques, Proton provides static
analysis to automatically detect conflicts at compile time.

13

Chapter 3

Selecting Targets with Multiple
Direct Touches

Multitouch workstations offer several potential benefits over mouse-based workstations in-
cluding direct-touch input, bimanual interaction, as well as same-hand multifinger interac-
tion. Yet, because prior work has examined direct-touch, bimanual and multifinger interac-
tions separately, they have not been able to quantify and compare the benefits of direct-touch
and potential increases in parallelism from multitouch. We examine direct-touch, bimanual
and multifinger interactions all together in the context of a multitarget selection task using
the traditional mouse-based workstation as a performance baseline.

We focus our study on target selection because it is one of the most common tasks
in current graphical user interfaces including tools for computer animation. Although less
common than single selection, multitarget selection is a frequent task in everyday computer
usage. For example, users often select multiple files or photos for reorganization or multiple
objects in a graphical drawing program for grouping. With a mouse-based workstation and
a single input touchscreen, users are forced to serially select multiple targets. In contrast,
a multitouch workstation that detects multiple contact points permits the possibility of
selecting the targets in parallel. In theory users could simultaneously select targets with all
ten fingers on both hands and thereby increase performance.

In our study we measure and compare the performance of four input methods for selecting
multiple targets. The input methods include: 1) one mouse (indirect, unimanual), 2) one
finger (direct-touch, unimanual), 3) two fingers, one on each hand (direct-touch, bimanual),
and 4) any number of fingers (direct-touch, bimanual, multifinger). From this empirical data
we determine the speedup due to direct-touch input over indirect mouse input as well as the
additional speedup due to using two fingers, and finally the contribution of unrestricted use
of all fingers.

CHAPTER 3. SELECTING TARGETS WITH MULTIPLE DIRECT TOUCHES 14

Figure 3.1: Our multitouch workstation.

3.1 Multitarget Selection Experiment

We expect one finger direct-touch to outperform the mouse for multitarget selection, since
in the unimanual case multitarget selection requires a series of single target selections, which
is faster with direct-touch than with the mouse [120]. We further expect that two-finger
bimanual multitarget selection will be faster than one-finger unimanual selection due to the
parallelism achieved from two hands [11, 29, 53, 66, 67]. Two hands also provide a division
of labor for multitarget selection. Each hand can work in its respective area of the screen
and thus does not need to travel long distances [31]. Finally, bimanual, multifinger selection
has the potential to exhibit even more overlapping action as each finger on each hand can
simultaneously move towards a different, nearby target.

Note however, that even though both the two finger and multifinger conditions permit
parallelism, the one finger condition has some advantages that can make up for its serial
nature. Using a single hand rather than two hands can decrease occlusion due to the hands
and thereby make it easier to see the targets on the display surface. In addition, since the
one finger condition forces serializing the task, users may realize it more quickly when they
miss a target and which target they missed. They may be able to correct this mistake before
moving too far away.

CHAPTER 3. SELECTING TARGETS WITH MULTIPLE DIRECT TOUCHES 15

3.1.1 Participants and Apparatus

We recruited eight participants (7 male, 1 female) who were all experienced desktop work-
station users, but had no significant experience with a multitouch workstation. Seven par-
ticipants were right-handed, and one participant claimed to be ambidextrous but used the
right hand to control the mouse.

To increase the ecological validity of our study, we chose our workstation configurations
for the task to reflect current best practices for professional single-user applications. We
used a Dell optical wheel mouse for the indirect input with mouse acceleration enabled and
a 30”7 HP LP3065 monitor at its native resolution of 2560 x 1600 pixels. Using the Mac
OS X system preferences keyboard and mouse controls, we set the mouse tracking speed
to a comfortable level so that a user could traverse the entire screen without the need for
reclutching the mouse. We used the built-in Mac OS X mouse acceleration profile.

We built the multitouch workstation used in this experiment (Figure 3.1) — it is patterned
after a drafting table and uses the frustrated total internal reflection technique described by
Han [47]. The table is capable of detecting an arbitrary number of simultaneous of touches.
The size of the screen is 76.2 x 57.2 cm with a resolution of 1024 x 768 pixels. Participants
stood in front of the screen, which was mounted at a 23 degree incline off horizontal.

Because large multitouch workstations have not yet been widely adopted, we believe that
there is no clear consensus on best practice methods for adapting single-user applications,
originally designed to work with a mouse and a desktop display, to the larger tabletop
display format of a multitouch workstation. Therefore, we designed our experiment to work
comfortably for desktop display sizes and then uniformly scaled them up for use on our
multitouch display. To guarantee uniform scaling, it is important that the desktop and
multitouch displays use the same aspect ratio. Since the native aspect ratios differ (4:3 for
multitouch, 8:5 for the desktop), we chose to use only a 4:3 portion (53.3 x 40.0 cm, 2133 x
1600 pixels) of the HP monitor for the mouse condition.

3.1.2 Task and Experiment Design

To separate the effects of direct-touch, bimanual and multifinger interaction, we compared
the performance on a multitarget selection task across four input conditions: 1) one mouse
(indirect, unimanual), 2) one finger (direct-touch, unimanual), 3) two fingers, one on each
hand (direct-touch, bimanual), and 4) unconstrained multifinger input (direct-touch, biman-
ual, multifinger). For the one finger condition, we required participants to use the same
finger during the duration of a trial but were permitted to change the finger between trials.
For the two finger condition, we instructed participants to use one finger on each hand and
to use those same two fingers during the duration of a trial. We allowed participants to
change fingers between trials. For the multifinger condition, we allowed participants to use
all ten fingers. Participants could choose to select targets serially or in parallel in the two
finger and multifinger conditions.

CHAPTER 3. SELECTING TARGETS WITH MULTIPLE DIRECT TOUCHES 16

Targets ®
© .jg\ ®
o ® 5 0
o

Home ® o ® Home
oo N/
® Distractors
o
®
® o

Target Region

Press green squares to begin trial

Figure 3.2: Top: Conceptual layout of the multitarget selection task. Bottom: Screenshot of
home positions and screenshot of task. Text in left screenshot reads: “Press green squares
to begin trial.”

CHAPTER 3. SELECTING TARGETS WITH MULTIPLE DIRECT TOUCHES 17

Our experiment did not include a two-mouse condition because we did not expect it
to perform well based on the results of prior work. Forlines et al. [37] found the time to
select two corners of a rectangle to be much longer for two mice than for two fingers on
a multitouch display. Balakrishnan and Hinckley [11] suggested that visually tracking two
mice is difficult for users especially when no line or other visual mark connects the two. In
our own experience operating two mice, we found that selecting targets, especially with the
non-dominant hand, was imprecise and indeed difficult.

To begin a trial, participants first selected home positions. For the one mouse and
one finger conditions, there was a single home position located on the right side of the
screen. For the two finger and multifinger conditions, there were two home positions, one
located on each side of the screen (Figure 3.2). After selecting the home position(s), the
participant was immediately presented with blue target discs and orange, non-selectable
distractor discs that were randomly placed between the two home positions. All discs were
presented simultaneously. We instructed participants to select all the blue targets as quickly
and as accurately as possible for each trial. We included the orange distractors to mimic
cases in which a user could not simply lasso select all the targets and had to select each one
individually. We counted a target as hit when the mouse cursor fell within the target on a
mouse click or when the center of a finger’s contact area fell within the target. On successful
hits, the system played a ding! sound. A trial ended after all blue targets were selected. Our
multitouch workstation is incapable of identifying which finger or which hand corresponds to
each touch. We identified the finger and hand after the experiment, by manually reviewing
a video recording of the multitouch trials.

We varied the number of blue targets across five levels: 3, 6, 9, 12, and 15, with an
equal number of orange distractors. The diameter of both the targets and distractors were
1.5 cm and 2.1 ¢m for the mouse-based and multitouch workstations respectively. We chose
these diameters based on the recommendations of Sears and Shneiderman [120], and we
believe they are large enough for us to expect that direct-touch selection would be faster
than mouse-based selection. For placing targets and distractors, we used a Poisson disk
distribution, which assigns targets and distractors random positions, while ensuring that
they are some minimum distance apart. All of the targets and distractors were separated
by at least the width of a target. The centers of all targets and distractors were situated
in the 22.6 x 24.0 cm and 32.3 x 34.3 cm region of the center of the screen for the mouse
and multitouch workstations respectively. The home positions were placed on the horizontal
midline of the screen, 7.5 ¢cm and 10.7 cm away from the target region for the mouse and
multitouch workstations respectively.

We used a within-subject design so that each participant used each of the four input
methods in four blocks of trials, with five levels for number of targets and two trials per
level. To account for ordering effects we used a Latin square to set the order of the input
methods across participants. Thus, for each participant there were 4 input methods x 4
blocks x 5 levels x 2 trials = 160 total trials. Participants had the option to rest between
trials. To mitigate learning effects we required participants to execute one block of 10 practice
trials when initially starting with a new input method. After completing the practice block,

CHAPTER 3. SELECTING TARGETS WITH MULTIPLE DIRECT TOUCHES 18

12
mouse I
10
8
B multifinger

4 = 7
// two fingers
5 -

—

Total Selection Time (s)

3 6 9 12 15
Number of Targets

Figure 3.3: Average total selection times of the four input methods as a function of number
of targets. The standard error bars are shown.

participants could perform as many additional practice trials as they wanted until they felt
comfortable enough to begin the experiment.

3.2 Results

For each trial of the experiment we recorded the total selection time. We started the timer
immediately after the participant touched the home position(s) to begin a trial and stopped
the timer as soon as the participant successfully finished selecting all presented targets.
Because misses occur naturally in real-world target selection tasks, we included the time
to correct misses in the total selection time. The average selection times are shown in
Figure 3.3 with a detailed summary of the data in Table 3.1. A repeated measures ANOVA
on the selection times found significant main effects for input method (Fj 2;=418.02, p<.001)
and number of targets (Fy25=509.77, p<.001), as well as a significant interaction between
these two independent variables (F1254=99.18, p<.001). The effect size of the interaction
(n*=.071) was small relative to the effect sizes of the input method (n?=.372) and the number
of targets (n?=.464). We attribute the interaction to the observation that the selection time
for the mouse increases at a much faster rate than for the other input conditions as the
number of targets increases (Figure 3.3).

Pairwise comparisons of selection times for each pair of input methods revealed significant
differences between all pairs (p<.012 between one finger and multifinger and p<.001 for the
rest), with the exception of the difference between the two finger and multifinger conditions

CHAPTER 3. SELECTING TARGETS WITH MULTIPLE DIRECT TOUCHES 19

Average selection time in seconds

mouse one finger | two fingers | multifinger

3 2.69 (.053) | 1.62 (.035) | 1.44 (.031) | 1.37 (.021)

6 4.90 (.102) | 2.75 (.057) | 2.26 (.060) | 2.32 (.049)

9 6.93 (.111) | 3.72 (.077) | 3.14 (.090) | 3.10 (.072)

12 8.91 (.135) | 4.79 (.108) | 4.00 (.099) | 4.15 (.105)

15 10.68 (.160) | 5.68 (.113) | 4.79 (.123) | 5.14 (.133)
avg time | 6.82 3.71 3.12 3.22

Table 3.1: The rows correspond to number of targets and the columns correspond to input
method. Each table contains the average time to select the corresponding number of targets
using the corresponding input method. Standard errors are noted in parentheses. The
fastest selection time per number of targets is given in bold. The last row contains the
average completion time for each input condition.

18

13.75%

|

16

n

10.45%

)
o

8.51%
T

—_
o

Miss Rate (%

mouse one finger two fingers multifinger

Figure 3.4: Average miss rate per input method, with standard error bars.

(p=.426). The fastest multitouch condition (either two finger or multifinger) was always
between 1.96 and 2.33 times faster than the mouse. The two finger and multifinger condi-
tions were consistently faster than one finger, which was consistently faster than the mouse
condition. The direct-touch, one finger condition accounted for about 83% of the reduction
in selection time, while bimanual interaction, either two finger or multifinger, accounted for
the remaining reduction. There was little difference in average selection times between the
two finger and multifinger conditions even in the densest condition of 15 targets.

We counted a miss each time the participant performed a mouse click or touch that did
not successfully hit a target. We also recorded a miss if the participant hit a target that was

CHAPTER 3. SELECTING TARGETS WITH MULTIPLE DIRECT TOUCHES 20

300

250

N
8
|

Number of Uses
x
o

—_
o
o

(%
o

mll_

thumb index middle ring little
(73) (1090) (564) (71) (2)

Figure 3.5: Number of uses per finger type across participants in parentheses. Distinct colors
denote distinct participants. The dark and light hues correspond to the right and left hand
contributions respectively.

already selected. Each participant had to select a total of 360 targets for each input method.
As shown in Figure 3.4 participants had an average miss rate of 8.51% for the mouse, 7.29%
for one finger, 10.45% for two fingers, and 13.75% for multifinger. A repeated measures
ANOVA found a significant effect due to input method (F52,=3.72 p=.027) and number of
targets (Fy08=46.11 p<.001) as well as a significant interaction between these two factors
(Fl12,84=3.74 p<.001). However, pairwise comparisons across pairs of input methods revealed
that the only significant difference in miss rate is between the one finger and multifinger
conditions (p<.001). The effect size of the number of targets (n?=.144) was much larger
than the effects of the input device (72=.030) and the interaction (1*=.030).

For the one and two finger conditions, one participant exclusively used middle fingers
and five participants exclusively used index fingers. The other two participants used index
fingers for the two finger condition, but for the one finger condition, one participant used the
middle finger, while the other participant used the index finger but switched to the middle
finger between trials.

For the multifinger condition, five participants opted to use more than two fingers, while
the remaining three participants preferred to just use two fingers, one on each hand. Fig-
ure 3.5 shows the number of times each finger was used to select a target, aggregated across
the five participants that used more than one finger on each hand. Out of 1800 total uses of
the different fingers, these five participants used the index fingers most frequently with 1090
uses and they used the little fingers least frequently with two uses. The data also showed

CHAPTER 3. SELECTING TARGETS WITH MULTIPLE DIRECT TOUCHES 21

68.5%

70

Contact Time (%)

1.2% 0.3% 0%

3 4 >4
Number of Fingers

Figure 3.6: Proportion of time users spent with different number of fingers simultaneously
in contact with the display surface.

that across all participants in the multifinger condition, one finger was in contact with the
multitouch surface 68.5% of the time, two fingers were simultaneously in contact 30.0% of
the time, and three and four fingers were simultaneously in contact 1.2% and 0.3% of the
time respectively (Figure 3.6). We never observed more than four fingers in contact with the
surface simultaneously.

In addition to measuring selection time and miss rates we also collected subjective pref-
erence data from the participants in an exit survey. We asked the participants to rate the
mouse-based workstation versus the multitouch workstation on a scale 1-9, with 1 indicating
preference for the mouse and 9 indicating preference for multitouch. The average rating was
8.4. We also asked the participants which of the four input conditions they thought was
fastest for selection. Four participants rated themselves as fastest using two fingers, while
three thought they were fastest in the multifinger condition. One participant thought he
was fastest with just one finger. The proponents for two fingers thought that using multifin-
ger caused more screen occlusion from fanning their fingers, and found it difficult to orient
multiple fingers on a single hand and target multiple targets at the same time. Those who
thought multifinger was the fastest condition liked the option of being able to reach for a
target with a different finger on the same hand.

CHAPTER 3. SELECTING TARGETS WITH MULTIPLE DIRECT TOUCHES 22

3.3 Discussion

The goal of our study was to compare the performance of one mouse, one finger, two finger
and multifinger techniques for multitarget selection. Consistent with previous work, we found
that using one finger direct-touch is faster than using a mouse and, as expected, bimanual
interactions are faster than using one finger. About 83% of the decrease in selection time
was due to moving from the indirect mouse to the one finger direct-touch with remaining
benefit of about 27% due to moving from unimanual multitouch to bimanual multitouch.

Miss rates were similar across the four input methods. However, the bimanual conditions
tended to have higher miss rates than the unimanual conditions and the difference of about
6.5% between one finger and multifinger is significant. Even though misses occurred more
frequently in the bimanual conditions and we included the time to correct these misses in
the total selection times, we found that users are still able to successfully complete the
multitarget selection task faster using two hands.

Although the multifinger condition provides more opportunity for simultaneously select-
ing multiple targets, it does not perform better than the two finger condition, at least for
novice multitouch users. The data reveals a strong preference for using one or two index
fingers, even when given the opportunity to use more. We found that in the multifinger
condition users rarely put more than two fingers in contact with the table simultaneously
(just 1.5% of the cases) and never placed more than four fingers in contact simultaneously
(Figure 3.6). These results suggest that the tracking of two simultaneous contacts may be
enough to support even multifinger multitarget selection. The relatively high miss rate for
multifinger may be due to increased cognitive load required to plan movements for multiple
fingers independently. In addition, fingers on the same hand are physically constrained to
the palm, which limits the set of targets these fingers can touch simultaneously.

Our study utilized targets with a diameter of 2.1 c¢cm, which is large enough for users
to select them with direct-touch more quickly than with the mouse. Targets for traditional
mouse and keyboard interfaces are not always that large, so developers should consider
adjusting target sizes when using multitouch input for an interface designed for the mouse
and keyboard.

3.3.1 Design Guidelines

Based on our experiment we recommend the following set of design guidelines for developing
applications for multitouch workstations. Since our studies focus on multitarget selection,
all of these guidelines are aimed at applications where target selection is the primary task.

e A one finger direct-touch device delivers a large performance gain over a mouse-based
device. For multitarget selection tasks even devices that detect only one point of touch
contact can be effective.

CHAPTER 3. SELECTING TARGETS WITH MULTIPLE DIRECT TOUCHES 23

e Support for detecting two fingers will further improve performance, but support for
detecting more than two fingers is unnecessary to improve multitarget selection per-
formance.

e Reserve same-hand multifinger usage for controlling multiple degrees of freedom or
disambiguating gestures rather than for independent target selections.

e Uniformly scaling up interfaces originally designed for desktop workstations for use
with large display direct-touch devices is a viable strategy as long as targets are at
least the size of a fingertip.

3.3.2 Limitations

It is worth noting that several aspects of our experimental design limit generalizability of our
results. For example, we do not vary the size or shape of our targets. As a result targets of
differing sizes and shapes may affect performance. Prior work has shown that targets must be
larger than the size of a fingertip to obtain good performance with multitouch devices [120].

While our experiment does not explicitly control density of targets at a fine-grained level,
we do test different numbers of targets. Since we place targets randomly based on a Poisson
disk distribution, it is unclear how well our results would generalize to the case when targets
are placed extremely close (within a target diameter) to one another. Moreover, real-world
applications rarely lay out targets randomly and therefore our results may not generalize
cleanly to more realistic applications. The performance impact of bimanual and multifinger
interactions may increase or decrease depending on the layout and clustering of targets.
Nevertheless, because our experiments are based on randomized layouts, they may serve as
baseline data for the more structured target layouts.

Learning, practice effects and muscle-memory may also play important roles in target
selection. A practiced pianist or touch-typist can simultaneously target keys in fixed loca-
tions with many fingers. Such learning effects and chording for multitarget selection on a
multitouch workstation require further study.

3.4 Conclusion

Our multitarget selection experiment demonstrated that multitouch has significant perfor-
mance advantages over the mouse for selecting multiple targets. The developer should design
multitouch applications such that targets are large, to ensure that they are easily selectable.
Users can then quickly select multiple objects, such as files or photos for reorganization. Ap-
plications for creating digital presentations and vector graphics also contain many selectable
objects. With multitouch, users can quickly select multiple objects to perform group manip-
ulations. Although target selection is a common task across graphical user interfaces, it is
just one of many possible actions a user can perform. We continue to investigate multitouch
bimanual interaction for drawing strokes in the next chapter.

24

Chapter 4

Drawing Directional Strokes
Bimanually for Menu Selection

In Chapter 3 we demonstrated that direct-touch input outperforms mouse input for target
selection. We also found that bimanual target selection, using one finger on each hand,
provides the maximum benefit. To investigate whether bimanual interaction also improves
performance in drawing directional strokes, we developed and tested two-handed multi-stroke
marking menus.

Introduced by Kurtenbach and Buxton [76, 77, 78], marking menus are gesture-based
menus that allow users to select a menu item by drawing a directional stroke. These menus
exhibit a number of desirable properties. Marking menus are scale-independent — the selection
depends only on the orientation of the stroke, not on its length, and therefore users can
efficiently draw short strokes with ballistic motions to select items [86, 98]. Users can draw
strokes in-place and do not have to make large round-trip traversals to select items from
a fixed location menu. Moreover, users can draw the straight-line strokes in an eyes-free
manner without diverting attention from their primary task. Finally, marking menus provide
a seamless novice-to-expert transition path; novices draw exactly the same selection strokes
as experts.

A drawback of marking menus is that selection accuracy depends on menu breadth, or the
number of items that appear at a single level of the menu. Kurtenbach and Buxton [76] found
that accuracy declines substantially when breadth is greater than eight items. To increase
the number of menu items available, researchers have added menu depth, or the number of
levels in the menu hierarchy. Compound-stroke [76] and multi-stroke [148] marking menus
allow for hierarchical traversal of marking menus using either zig-zag strokes or a sequence of
strokes. Multi-stroke marking menus have the added benefit that users can draw each stroke
in the same location, conserving desk and display space. At breadth-8, however, compound-
stroke and multi-stroke techniques perform well only up to depth-2 or depth-3 respectively.
More recent techniques have used additional stroke attributes such as stroke position [147]
and curvature [9] to further increase menu breadth. However, all of these techniques have
focused on one-handed marking menus with either mouse or stylus-based input devices.

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 25

-l Carrier =

» BOE0000

Figure 4.1: Using a two-handed ordered marking menu, the left thumb strokes to select
“Text Attributes” and then the right thumb selects “Bold” to modify the sentence. With a
two-handed simultaneous marking menu, users draw both strokes at the same time.

Marking menus are a good match for multitouch devices because they do not require pre-
cise targeting of individual menu items. Instead, marking menus rely on coarse directional
movement, thereby circumventing the fat finger problem [110]. Unlike a mouse or stylus,
multitouch devices detect multiple points of contact and therefore support two-handed inter-
actions. These devices have the potential to significantly increase the efficiency of interaction
because users can overlap their hand motions and work with both hands in parallel.

We examine the speed and accuracy of one and two-handed multi-stroke marking menus
with two multitouch devices: a small-screen Apple iPod Touch operated with the thumbs
(Figure 4.1) and a Fingerworks iGesture [36] operated with the index or middle fingers as
one would on a large-screen interactive surface. We introduce two new two-handed variants
of multi-stroke marking menus:

Two-Handed Simultaneous: Users draw two strokes, one with each hand, at the
same time. This variant is designed to maximize parallelism in hand motions and thereby
offer the fastest selection times.

Two-Handed Ordered: Users alternate the hand used to draw each stroke. Since
either hand (left or right) can start the stroke sequence, this variant offers access to twice
as many menu items for the same number of strokes, while also allowing for some temporal
overlap in hand motions.

We compare the speed and accuracy of these two-handed designs to one-handed marking
menus. The anatomy of the hand imposes constraints on the range of motions different
fingers can make. It may be easier to draw individual strokes or pairs of strokes in some

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 26

directions rather than others. To better understand these constraints, we also examine how
stroke direction affects speed and accuracy. We conclude with a set of design guidelines
that multitouch designers should consider when developing one- or two-handed multi-stroke
marking menus at both handheld (iPhone/iPod Touch) and larger (iGesture/iPad) scales.
We present several demonstration applications that show how two-handed marking menus
could be used to support real-world tasks and to facilitate the transition from novice to
expert use.

4.1 Related Work

In addition to multi-stroke marking menus, our two-handed multi-stroke marking menus
build on touch-based and bimanual menu techniques.

Marking Menus on Touch Devices: Touchpads that can track a single point of
contact have been commonplace on laptops for the last decade. Balakrishnan and Patel [10]
integrated such a touchpad with a mouse to allow the non-dominant hand to select com-
mands using a compound-stroke marking menu. Isokoski and Kéki [55] found that curved
strokes were more accurate but slower in movement time than drawing straight-line selec-
tion strokes. Touch-sensing screens are now commonplace on mobile devices. Karlson et
al. [63] used directional strokes for thumb-based navigation on a PDA. Yatani et al. [146]
used a combination of position and directional strokes to disambiguate the selection of closely
packed items on a touch-based mobile device. Lepinski et al. [82] developed chording mark-
ing menus in which users draw simple directional strokes using combinations of fingers on a
single hand. While all of these stroke-based techniques are designed for touch-based devices,
none of them have examined the use of multiple strokes in different directions or two-handed
interactions.

Bimanual Menu Techniques: Odell et al. [102] presented an asymmetric bimanual
marking menu technique in the context of a shape drawing system. The dominant hand
selects a shape and the non-dominant hand selects a command to perform on this shape
using a marking menu. Unlike this approach we develop symmetric two-handed marking
menus in which both hands perform the same actions. By splitting the strokes of a multi-
stroke marking across both hands, we allow for overlap in the hand motions and increase
the speed of the interaction.

Controllers for console-based gaming systems such as the Xbox [144] usually include two
joysticks, one for each hand. Wilson and Agrawala [136] developed a two-joystick based
text-entry system using an onscreen keyboard and showed that such a symmetric bimanual
approach is faster than using the default, single joystick technique. TwoStick [75] extends
Quikwriting [109], a technique that uses directional joystick movements to enter text, for
use with two joysticks. Weegie [132] is another two-stick-based text entry system in which
each stick operates a separate marking menu. Unlike our two-handed marking menus, the
two menus in Weegie work independently of one another.

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 27

4.2 Designing Two-Handed Marking Menus

The number of menu levels and number of menu items per level determine the total number of
menu items accessible by a multi-stroke marking menu. The breadth of the menu corresponds
to the number of menu items at each level, which is the number of possible stroke directions.
The depth of a menu corresponds to the number of levels, which is the number of strokes
required to traverse the menu hierarchy:.

A breadth-M, depth-N marking menu thus has M % N menu items. We extend multi-
stroke marking menus for use on multitouch devices by splitting the stroke sequence between
two hands. Thus, each hand is responsible for half the number of strokes. We consider several
aspects of two-handed operation that can further increase menu selection performance:

Temporal Overlap of Motion: Users can temporally overlap motions of their hands
and this parallelism can reduce the time required to complete the interaction.

Hand Identity (Left/Right): Multitouch devices detect multiple points of contact;
we can use heuristics based on contact position to infer the hand corresponding to each
contact — e.g., the left-most touch is from the left hand and the right-most touch is from the
right hand. We can then increase the number of menu items that are accessible with a single
stroke, by assigning a different set of items to each hand. With a hierarchical marking menu
of depth-N in which either hand can draw each stroke in the sequence, we can use hand
identity to increase the number of accessible items by a factor of 2V. However, if the same
hand is used to draw more than one consecutive stroke the potential for temporal overlap in
the hand motions is reduced.

Chunking: Buxton [21] has shown that users can mentally group together frequently
co-occurring compound motor tasks into a single chunk that they automatically perform
together. With two-handed multitouch devices, users can draw a pair of strokes simulta-
neously, one with each hand, and may learn to chunk these pairs together into a single
action. Thus, users can mentally flatten two levels of a multi-stroke hierarchy into a single
level, and convert a breadth-M, depth-2 marking menu into a breadth-M2, depth-1 menu.
Such increased breadth may allow interface designers and users to fit more items in a single
cognitive grouping.

Based on these design considerations we propose the following two-handed multi-stroke
marking menus designs:

4.2.1 Two-Handed Simultaneous Marking Menus (2HS)

Users simultaneously draw two strokes, one with each hand (Figure 4.2 Left). Users can draw
additional stroke pairs to traverse a menu hierarchy. This variant is designed to maximize
the temporal overlap of motions and also facilitate chunking of the stroke pairs into a single
action. However, this variant does not use hand identity as an extra bit of information.
Therefore, for a given number of strokes it does not increase the number of accessible menu
items over the one-handed multi-stroke marking menu design. However, when users chunk

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 28

Two-Handed Simultaneous Marking Menu (2HS) Two-Handed Ordered Marking Menu (2HO)
Left Right Left Right Left Right

- 1 - - - =
Time «# .1or1

- - . =
v L -, -

Figure 4.2: Left: With the two-handed simultaneous marking menu, users can draw pairs of
strokes simultaneously. Right: With the two-handed ordered marking menu, users alternate
drawing strokes between hands. The identity of the initiating hand provides an additional
bit of information, doubling the number of accessible menu items.

pairs of simultaneous strokes this variant can be considered as flattening the depth and thus,
squaring the breadth of the menu.

4.2.2 Two-Handed Ordered Marking Menus (2HO)

Users draw a sequence of strokes with alternating hands (Figure 4.2 Right). Although the
strokes must be drawn in order, the ordering only depends on the start-time of each stroke.
Users can begin a second stroke before the first stroke is complete to increase temporal
motion overlap. This variant considers hand identity, but because the hands are forced to
alternate, only the hand initiating the stroke sequence can vary (left or right), providing one
additional bit of information. Thus, this approach doubles the number of accessible menu
items for a fixed number of strokes. Although using hand identity could in theory increase
the number of accessible menu items by a factor of 2V, our ordered design forces users to
alternate hands to maximize the potential for temporal motion overlap in stroke drawing.

4.3 User Study 1: Comparison of One- and
Two-Handed Marking Menus

To investigate the performance benefits of our two-handed multi-stroke marking menu de-
signs we conducted an initial user study comparing both of our designs to standard one-
handed multi-stroke marking menu designs. To simplify analysis we selected only right-hand
dominant participants, but we included both right- and left-handed unimanual marking
menus in our study. We conducted the experiment using two multitouch devices — an iPod
Touch to represent handheld interaction and the iGesture to represent larger-screen interac-
tion. Our hypotheses were:

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 29

FINGERW_ORKS

Figure 4.3: The Fingerworks iGesture multitouch pad.

H1: The two-handed simultaneous menu is faster for selecting menu items than all other
menus including two-handed ordered and one-handed menus. The two-handed simultaneous
design maximizes the opportunity to temporally overlap hand motions and therefore reduces
selection time.

H2: The two-handed ordered menu is faster than a one-handed marking menu for se-
lecting a menu item. Users do not have to wait for one stroke to finish before starting the
next stroke and are able to overlap their hand movements.

H3: Of the one-handed conditions the right-handed multi-stroke marking menu outper-
forms the left-handed multi-stroke marking menu. Since our participants are right-handed,
their dominant hand moves more quickly and accurately than their non-dominant, left hand.

Two-handed motions on touch devices may have different constraints than the mouse and
stylus strokes investigated in prior work [76, 77, 98, 147, 148]. Studies of bimanual motion
suggest that mirrored pairs of strokes may be easier to draw than other pairs [65, 87]. Thus,
our study also investigates how well users can draw directional strokes with their left and
right hands individually, and how well they can draw pairs of strokes with two hands.

4.3.1 Participants and Apparatus

We recruited 16 right-handed participants (12 male, 4 female, between 21 and 26 years
old). All were experienced computer users and ten were experienced iPhone or iPod Touch
users. None of the participants had experience with marking menus or with large multitouch
screens. Participants performed the experiment using two multitouch devices:

Apple iPod Touch: The 2nd generation iPod Touch is a commonly used handheld
device with a multitouch screen. It has a working area of 7.5 x 5 cm and display resolution

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 30

L R L R L R 1
L R LR#1 # #«
- T A= == T N -

2HS 2HS 2HS 2HO 2HO 2HO
4-2 Layout 8-2 Layout 4-4 Layout 4-2 Layout 8-2 Layout 4-4 Layout

Figure 4.4: Example stimuli for the two-handed simultaneous (2HS) and two-handed ordered
(2HO) conditions. Arrows appear in separate columns to indicate the hand that should
draw the stroke. Pairs of arrows in the same row indicate strokes that must be drawn
simultaneously. Participants must draw strokes in order from top to bottom. In the one-
handed conditions (not shown), the stimuli only contain arrows in either the left or right
column.

of 480 x 320 pixels. Participants used their thumbs on this device.

Fingerworks iGesture Pad: The iGesture is an indirect multitouch pad with a work-
ing area of 16.5 x 12.4 cm (Figure 4.3) mapped by absolute coordinates to a 40.6 x 30.5 cm
Dell monitor with a display resolution of 1600 x 1200 pixels. The study ran on Mac OS X.
Participants used either their index fingers or middle fingers on this device.

4.3.2 Task and Stimuli

We designed the study to test expert-level performance. However, our participants had
practically no prior experience using marking menus. Training participants to use multi-
stroke marking menus with realistic menu items would force them to learn a complex menu
organization. But, an expert user would require little effort to recall the necessary strokes
for a command. To better elicit expert-level performance with far less training, we adopted
the strategy of previous marking menu studies [76, 147, 148] and gave participants stimuli
in the form of arrows that directly indicated the strokes they should draw.

Examples of the stimuli we used are shown in Figure 4.4. Arrows appeared in separate
columns to indicate the hand that should draw the stroke. Pairs of arrows in the same row
indicated strokes that must be drawn simultaneously. Participants had to draw the strokes
in order from top to bottom. In the one-handed conditions (not shown in figure), the stimuli
only contained arrows in either the left or right column.

To begin a trial the participant tapped the device with one finger for the one-handed
conditions or one finger on each hand for the two-handed conditions. The stimulus appeared
at the top of the screen and, following the approach of Zhao et al. [147], as soon as the
participant touched the input device, the cue disappeared so that the participant could not

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU

SELECTION 31
Stimulus =) ‘
Successful
Trial Message Correct

-—) User’s Strokes

User’s Progress

__ NextTrial
Instruction

Figure 4.5: Screenshot of experimental setup with feedback given after a successful trial.

read the arrows while drawing strokes. This approach was designed to better elicit expert-
level performance because it prevented participants from interleaving drawing the strokes
and reading the stimulus. We asked the participant to draw the strokes as quickly and
accurately as possible.

After the participant made the designated number of strokes (two or four strokes in
our experiment), a feedback screen showed whether or not the trial was successful and the
percentage of trials completed so far (Figure 4.5). On correct trials we colored the strokes
and stimuli green, and on incorrect trials we colored them red. The participant could rest
between trials while the feedback was onscreen and they could continue to the next trial by
tapping on the device.

4.3.3 Study Design

Our experiment used a within-subjects design and included three independent variables:
device, menu technique, and menu layout. We fully counterbalanced the device variable so
that half the participants used the iPod Touch first and the other half used the iGesture
first.

Participants had to select menu items using one of four menu techniques: left-handed
multi-stroke marking menu (1HL), right-handed multi-stroke marking menu (1HR), two-
handed simultaneous multi-stroke marking menu (2HS), or two-handed ordered multi-stroke
marking menu (2HO). We used a Latin square to counterbalance the ordering of the menu
techniques.

For each menu technique we tested three different breadth-depth menu layouts: 4-2, 8-2,
and 4-4. A breadth-4 layout includes only the four cardinal directions, whereas a breadth-8
layout includes both the cardinal and diagonal directions. We only considered the number
of strokes in multiples of two, so that strokes could be evenly distributed between hands
for the two-handed conditions. Although the two-handed techniques would work with an

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 32

odd number of strokes, we believe it should be possible to extrapolate performance for those
conditions using the data we collected for even numbers of strokes.

We fixed the ordering of the three layouts from least to most complex (4-2, 8-2, 4-4).
As the number of accessible menu items or stroke combinations increases, more trials are
necessary to obtain good coverage. Our three layouts allow a total of 16, 64, and 256 possible
stroke combinations and we used 24, 32, and 32 trials respectively. For the 4-2 layout, each
stroke combination was performed at least once, in randomized order. For the 8-2 layout
there are four possible pairs of on- and off-axis strokes: on-on, on-off, off-on, off-off. We
randomized the stroke combinations such that each participant performed eight trials from
each axis grouping. For the 4-4 layout, we randomly chose the stroke combination from all
possible combinations for that layout. For the two-handed ordered condition, we randomized
the order of the starting hand with half the trials beginning with the left hand.

We considered a trial to be a miss if any one of the strokes was drawn in an incorrect
direction. To check for misses, we compared the angle of the line segment connecting the
start and end points of the drawn stroke with the angle of each possible stroke direction in
the menu. If the angle of the drawn stroke was closest to the angle cued in the stimulus it
was considered correct, otherwise it was considered a miss. We added each missed trial to
the end of the trial queue so that users would have to perform it again until successful.

Before testing each menu layout, we gave participants a practice block to train them in
reading the stimulus and move them towards expert-level performance. For the 4-2 condi-
tions we required 20 practice trials, while we required 8 practice trials for the 8-2 and 4-4
conditions. In all cases participants had the option to continue practicing until they felt
comfortable with the task. The entire experiment took each participant roughly one hour.

We measured four dependent variables: reaction time, movement time, total time, and
accuracy. Reaction time was the interval between the first display of the stimulus and the
start of the touch beginning the first stroke. It represents the time required for participants
to process the stimulus and decide which strokes to draw. Movement time was the interval
between the first touch and completion of all strokes and represents the time required to
physically draw the strokes. Total time was the sum of the reaction and movement times. We
only considered timing data from correct trials to better account for expert-level performance.
We computed accuracy as the fraction of correctly performed trials to the total number of
incorrect trials. We did not include the trials that were added to the end of the queue as the
result of a miss in our accuracy measure.

4.4 Results

We performed a 2 (device) x 4 (technique) x 3 (layout) repeated measures ANOVA for each
dependent variable. The average total, reaction, and movement times are shown in Figure 4.6
for the iPod Touch and in Figure 4.7 for the iGesture. The corresponding numerical results
are shown in Tables 4.1, 4.2, and 4.3 for total, reaction, and movement times respectively.

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 33

M Total M Reaction M Movement

| iPod Touch

THL 1HR 2HS 2HO THL 1HR 2HS 2HO THL 1HR 2HS 2HO
4-2 8-2 4-4

Figure 4.6: Average times (with standard error bars) for each menu technique and menu
layout on the iPod Touch.

M Total M Reaction M Movement
iGesture

THL 1HR 2HS 2HO THL 1HR 2HS 2HO THL 1HR 2HS 2HO
4-2 8-2 4-4

Figure 4.7: Average times (with standard error bars) for each menu technique and menu

layout on the iGesture.

The Figures 4.8 and 4.9 show the average accuracy rates for the iPod Touch and iGesture
respectively and Table 4.4 contains the corresponding numerical results.

For each of the menu layouts, we also compared the performance between same-axis stroke
pairs and different-axis stroke pairs. Finally, for the two-handed conditions, we examined
differences in the amount of temporal overlap of the two hands and the effects of the starting
hand on performance for the ordered technique.

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU

SELECTION 34
Total time in milliseconds
iPod Touch iGesture
4-2 8-2 4-4 4-2 8-2 4-4 All

1HL || 1149 (52) | 1238 (57) | 1988 (91) || 1179 (36) | 1231 (39) | 1926 (67) || 1452 (51)
1HR || 1065 (51) | 1151 (49) | 1861 (69) || 1116 (29) | 1174 (36) | 1864 (65) || 1372 (46)
2HS || 1003 (38) | 1149 (54) (1875 (109)|| 1110 (39) | 1197 (55) | 1897 (84) || 1372 (59)
2HO || 1094 (48) | 1170 (54) [1832 (91) || 1183 (39) | 1221 (38) | 1884 (68) || 1397 (52)

Table 4.1: Average total times in milliseconds and standard errors in parentheses.

Reaction time in milliseconds

iPod Touch iGesture
4-2 8-2 4-4 4-2 8-2 4-4 All
1HL || 606 (15) | 610 (17) | 767 (35) || 680 (16) | 684 (14) | 829 (30) || 696 (17)
1HR || 572 (15) | 597 (14) | 747 (28) || 663 (12) | 666 (15) | 805 (26) || 675 (16)
2HS || 716 (24) | 783 (40) | 944 (52) || 820 (28) | 874 (40) | 1042 (46) || 863 (34)
2HO || 631 (29) | 648 (24) | 788 (42) || 743 (25) | 744 (18) | 893 (35) || 741 (24)

Table 4.2: Average reaction times in milliseconds and standard errors in parentheses.

4.4.1 Total Time

As shown in Table 4.1, the average total times pooled across device and layout were 1452 ms
for 1HL, 1372 ms for 1HR, 1372 ms for 2HS, and 1397 ms for 2HO. We found significant main
effects for technique (F3 45=6.45, p=.001) and layout (F330=378.70, p<.001). We also found a
significant two-way interaction between device and technique (F3 45=>5.25, p=.003) indicating
that technique affects total time differently on the two devices. Thus, we performed separate
post hoc multiple means comparison tests with Bonferroni correction for each device. For
the iPod Touch we found that 1HL was significantly slower than the three other techniques
across all three layouts (p<.008). For the iGesture the only significant result we found was
that 1HL was slower than 1HR across all layouts (p=.006). These results suggest that for
both devices and across all layouts, the non-dominant, left-handed menu is significantly
slower than the dominant, right-handed menu. In addition, the total times required by
the two-handed menus are not significantly different from the total time required by the
right-handed menu.

4.4.2 Reaction Time

As shown in Table 4.2, the average reaction times pooled across device and layout were
696 ms for 1HL, 675 ms for 1HR, 863 ms for 2HS, and 741 ms for 2HO. We found significant
main effects for device (F}15=88.26, p<.001); the average reaction time for the iPod Touch
(701 ms) was faster than for the iGesture (787 ms). We also found significant main effects

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU

SELECTION 35
Movement time in milliseconds
iPod Touch iGesture
4-2 8-2 4-4 4-2 8-2 4-4 All
1HL || 542 (44) | 629 (43) | 1221 (67) || 499 (26) | 547 (28) | 1097 (47) || 756 (37)
1HR || 493 (41) | 555 (39) | 1115 (51) || 453 (20) | 509 (27) | 1059 (45) || 697 (33)
2HS || 287 (21) | 366 (26) | 931 (26) || 291 (18) | 324 (22) | 854 (52) || 509 (31)
2

2HO || 463 (34) | 521 (38) | 1044 (63) || 440 (24) | 477 (27) | 991 (47) | 656 (35)

Table 4.3: Average movement times in milliseconds and standard errors in parentheses.

for technique (F345=62.16, p<.001) and layout (F530=61.13, p<.001). In addition, we found
two-way interactions between technique and device (Fj 45=4.36, p=.009) as well as technique
and layout (Fg00=2.57, p=.024) indicating that technique affects reaction time differently
for each device and for each layout. For the iPod Touch, we ran post hoc multiple means
comparison tests with Bonferroni correction and found that 2HS was significantly slower
than all other techniques regardless of layout (p<.003). We found only one other significant
difference between 1HR (597 ms) and 2HO (648 ms) for the 8-2 layout (p<.020). For the
iGesture, post hoc multiple means comparison tests with Bonferroni correction found no
significant differences between the one handed techniques (1HL and 1HR) across all layouts.
We also found that 2HS was significantly slower than all other techniques for every layout
(p<.001) with one exception — in the 4-2 layout we found no significant difference between
2HS and 2HO. All other pairs were significantly different (p<.026). These results suggest that
the two-handed simultaneous technique has the slowest reaction times of all the techniques.

4.4.3 Movement Time

As shown in Table 4.3, the average movement times pooled across device and layout were
756 ms for 1HL, 697 ms for THR, 509 ms for 2HS, and 656 ms for 2HO. We found a significant
main effect for device (F},5=7.48, p=.015); the average movement time for the iGesture
(628 ms) was faster than for the iPod Touch (681 ms). We also found significant main
effects for technique (Fj345=74.91, p<.001) and layout (F33,=399.22, p<.001). Post hoc
multiple marginal means comparison tests with Bonferroni correction found that movement
times between all pairs of techniques were significantly different (p=.035 for pair 1HR-2HO,
p<.001 for all other pairs), regardless of device and layout. The only significant two-way
interaction was between device and layout (F30=>5.18, p=.012). These results suggest that
the two-handed techniques have faster movement times than the one-handed techniques.
The two-handed simultaneous technique is faster than the two-handed ordered technique,
while the right-handed technique is faster than the left-handed technique.

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION

100%

90%

Accuracy (%)

80%

70%-

THL 1HR 2HS 2HO

4-2

iPod Touch

THL 1HR 2HS 2HO

8-2

4-4

THL 1HR 2HS 2HO

36

Figure 4.8: Average accuracies (with standard error bars and baseline value of 70%) for each
menu technique and menu layout on the iPod Touch.

100%

90% |

80% 1

Accuracy (%)

70%-

THL 1HR 2HS 2HO
4-2

iGesture

THL 1HR 2HS 2HO

8-2

THL 1HR 2HS 2HO
4-4

Figure 4.9: Average accuracies (with standard error bars and baseline value of 70%) for each
menu technique and menu layout on the iGesture.

Accuracy (%)

iPod Touch iGesture
4-2 8-2 4-4 4-2 8-2 4-4 All
1HL || 984 (0.7) | 90.4 (2.1) | 91.4 (1.8) || 96.8 (0.9) | 92.7 (1.5) | 92.9 (1.4) |[93.7 (0.7)
1HR || 99.5 (0.4) | 93.5 (1.3) | 91.6 (1.6) || 96.9 (0.8) | 95.5 (1.1) | 92.3 (1.1) || 94.9 (0.5)
2HS || 96.8 (1.0) | 82.5 (2.9) | 89.5 (2.0) || 97.1 (0.8) | 89.0 (2.0) | 87.7 (2.5) || 90.4 (1.2)
2HO || 97.9 (0.6) | 89.6 (1.5) | 88.9 (2.4) || 96.1 (0.9) | 94.5 (1.1) | 89.9 (1.6) || 92.8 (0.8)

Table 4.4: Average accuracy and standard errors in parentheses.

4.4.4 Accuracy

As shown in Table 4.4, the average accuracy rates pooled across device and layout were 93.7%
for 1HL, 94.9% for 1HR, 90.4% for 2HS, and 92.8% for 2HO. We found significant main
effects for technique (F345=9.03, p<.001) and layout (F330=32.95, p<.001). In addition, we
found a significant two-way interaction between technique and layout (Fgg0=3.36, p=.005),

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU

SELECTION 37
14 hor-hor " hor-ver Mver-hor ™ ver-ver 14 hor-hor " hor-ver Bver-hor Hver-ver
iPod Touch |Gesture
1.2 1.2{
I [
- 1.0 - 1.0
“é 0.8 2os
= =
I 0.6 = 0.6
S S
=04 F 04
0.2 0.2
0 0
THR THL THR 2HS

Figure 4.10: Average total times for horizontal or vertical stroke groupings for the 4-2 layout
using the iPod Touch (Left) and the iGesture (Right). Standard error bars are shown.

indicating that technique affects accuracy differently for each layout. Post hoc tests found
no significant differences in accuracy between the four techniques for the breadth-4 layouts.
However, for the 8-2 layout we did obtain a a significant simple main effect for technique
(F545=11.63, p<.001) where 2HS was less accurate than 1HR (p<.001) and 2HO (p=.020).
We also found a significant two-way interaction between layout and device (F}30=13.94,
p<.001) as the iPod Touch was more accurate than the iGesture for layout 4-2 (p=.012),
but less accurate for layout 8-2 (p=.006). These results indicate that there are no significant
differences in accuracy between all four techniques at breadth-4 but that the two-handed
simultaneous technique is less accurate than other techniques at breadth-8.

4.4.5 4-2 Layout Stroke Groupings

For the 4-2 layout, we compared horizontal-horizontal, horizontal-vertical, vertical-horizontal,
and vertical-vertical groupings of stroke pairs. Total times for the stroke groupings are shown
in Figure 4.10. Conducting a 2 (device) X 4 (technique) x 4 (stroke grouping) repeated
measures ANOVA with total time as the dependent variable, we found significant main ef-
fects for device (F315=9.24, p=.008), technique (F345=8.23, p<.001), and stroke grouping
(F545=59.87, p<.001). On average, horizontal-horizontal strokes (1057 ms) and vertical-
vertical strokes (1108 ms) were faster than mixed stroke pairs (1157 ms for horizontal-vertical
and 1146 ms for vertical-horizontal). We also found a significant two-way interaction between
technique and stroke grouping (Fy 135=35.44, p<.001); the 2HS technique had a larger dif-
ference in speed between same-axis pairs and different-axis pairs, than the other techniques.
In addition, for the 2HS condition, stroke pairs that were either bilaterally symmetric or in
the same direction (translationally symmetric) (894 ms) were faster than the remaining pairs
(1147 ms) by 28%. For accuracy we found no significant main effect for stroke grouping nor
any significant interactions between any of the factors. These results show that the average

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU

SELECTION

1.4Ion—on [Won-off Moff-on M off-off
iPo'd TTouch

1

1.2

38

14Ion-on Mon-off Moff-on M off-off
iGesture

1.2

% 10 5 10
g 0.8 g 0.8
= =
© 0.6 s 0.6
o (o]
F 04 F 04

0.2

0

THL THR 2HS 2HO
8-2

0.2

0

THL THR 2HS 2HO
8-2

Figure 4.11: Average total times for on- or off-axis stroke groupings for the 8-2 layout using
the iPod Touch (Left) and the iGesture (Right). Standard error bars are shown.

total times for same-axis pairs is faster than for strokes along different axes and that the
largest differences in speed occurs for the two-handed simultaneous technique.

4.4.6 8-2 Layout Stroke Groupings

We compared on-on, on-off, off-on, and off-off axis selections for the 8-2 layout. An on-axis
stroke is one drawn in a cardinal direction while an off-axis stroke is one drawn along a
diagonal. Total times for the stroke groupings are shown in Figure 4.11. Conducting a 2
(device) x 4 (technique) x 4 (stroke grouping) repeated measures ANOVA with total time as
the dependent variable, we found significant main effects for technique (F345=3.90, p=.015)
and stroke groupings (F345=46.59, p<.001). On average, on-on strokes (1148 ms) and off-
off strokes (1188 ms) were faster than mixed stroke pairs (1212 ms for on-off and 1232 ms
for off-on). There was also a significant two-way interaction between technique and stroke
groupings (Fy135=6.01, p<.001), as the 2HS technique had a bigger speed difference between
pairs that were on-on or off-off compared to the mixed pairs than the other techniques. We
also found a significant three-way interaction (Fy135=2.73, p=.006). For accuracy we found
no significant main effect for stroke grouping nor any significant interactions between any
of the factors. These results show that the average total times for on-on and off-off pairs is
faster than mixed pairs and that the largest differences in speed occurs for the two-handed
simultaneous technique.

4.4.7 Temporal Overlap

To assess the level of temporal overlap in the two-handed conditions, we computed the de-
lay between the initial touch of the first hand and the initial touch with the second hand.
A shorter delay indicates a greater likelihood of overlap between the hand motions. We

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 39

performed a 2 (device) x 2 (2HS and 2HO techniques) x 3 (layout) repeated measures
ANOVA with delay as the dependent measure. We found significant main effects for tech-
nique (F 15=157.47, p<.001) and layout (F530=10.45, p<.001). The average delay was
shorter for 2HS (44 ms) than for 2HO (261 ms). We also found an interaction between
technique and device (Fy15=12.16, p=.003), as the delay for 2HS was slightly longer for the
iGesture than the iPod Touch, but the delay for 2HO was slightly longer for the iPod Touch
than for the iGesture. These results confirm that the two-handed simultaneous technique
has a much shorter delay between initial touches and greater temporal overlap than the
two-handed ordered technique.

4.4.8 Starting Hand for Two-Handed Ordered

For 2HO we compared whether using the left hand or the right hand for the first stroke
had an impact on performance. We performed separate 2 (hand) x 3 (layout) x 2 (device)
repeated measures ANOVAs on total time and accuracy. For total time we found significant
main effects for device (Fy15=6.65, p=.021) and layout (F»3p=229.12, p<.001). More inter-
estingly, however, we found no significant main effect for hand (£} 15=0.31, p=.584), nor any
interaction effects between any of the factors, which indicates that the starting hand does not
significantly affect total time, regardless of layout and device. For accuracy we found only a
significant main effect for layout (F30=12.17, p<.001). Again, we found no significant main
effect for hand (F}15=2.10, p=.168), nor any significant interactions between hand and the
other two factors, which indicates that there was no significant difference in accuracy due
to starting hand, regardless of layout and device. The only significant two-way interaction
was between device and layout (F30=4.97, p=.014). These results suggest that the starting
hand does not affect performance (speed or accuracy) of the two-handed ordered technique.

4.4.9 Single Stroke Direction

To better understand which individual stroke directions are easiest to perform with the
thumbs and fingers, we examined the movement time for the first stroke in the 8-2 layout
for both of the one-handed conditions (Figures 4.12 and 4.13). One participant did not have
any trials for one of the directions with the right hand in the iPod Touch condition, so we
removed that person’s data from the right hand analysis. After removing this data we could
not perform a complete multi-way repeated measures ANOVA across all factors. Therefore,
for the iPod Touch, we ran separate ANOVAs for each hand with stroke direction as the
factor and we found that stroke direction had a significant effect on movement time for both
the left hand (F7 105=3.74, p=.001) and the right hand (F; 9s=3.46, p=.002). Examining the
average movement times in more detail, we found that the left thumb was fastest at selecting
strokes in the upper left quadrant (N, NW, W directions) and the right thumb was fastest
at selecting strokes in the upper right quadrant (N, NE, E directions). In addition, on-axis
stroke directions tended to be faster than their neighboring off-axis directions. Pooling the
data across all directions, we found that the right thumb (161 ms) was significantly faster

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 40

024 Wleft MRight

I I iPod Touch

N NE E SE S SW W
Single Stroke Direction

NW

Figure 4.12: First stroke average movement (with standard error bars) times using the iPod
Touch for the 8-2 layout.

[MLeft MRight
0.20 iGesture

© o ©
o = 4
ML SR

Movement Time (s)

o
o
" A

SE S NW
Single Stroke Direction

Figure 4.13: First stroke average movement (with standard error bars) times using the
iGesture for the 8-2 layout.

than the left thumb (191 ms) (p=.005) at drawing a single stroke. These results show that
the right thumb is faster than the left thumb, and both thumbs are faster at moving upwards
and inwards, with respect to the hands, than in other directions.

For the iGesture, we ran a two-way ANOVA comparing with hand and stroke direction as
the factors. We found no significant main effects for hand (F7 105=0.83, p=.565) or direction
(F115=0.36, p=.559), and we found no significant interaction effect (F7105=0.49, p=.840).
These results indicate that on the iGesture, where a participant uses either the index or
middle finger, neither the hand nor the direction significantly affects movement time of a
single stroke.

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 41

4.5 Discussion

The overall goal of our study was to investigate the performance of multi-stroke marking
menus in the context of multitouch devices. We summarize the results as follows:

Two-handed sitmultaneous marking menus are as fast as dominant-handed
multi-stroke marking menus. We hypothesized (H1) that 2HS would outperform the
other menu techniques because it maximizes temporal overlap in hand motion. However, the
total time for 2HS was very similar to that for IHR and we found no statistically significant
differences between them. Although 2HS was fastest in movement time, 16.5-41.8% faster
on the iPod Touch and 19.4-36.4% faster on the iGesture than 1HR, it also incurred a
slower reaction time, indicating that users spent more time remembering and planning their
strokes when coordinating simultaneous motions of two hands. These results do not allow us
to accept hypothesis HI. However, based on our own experience with 2HS we believe that
with practice users can cognitively chunk the simultaneous two-stroke gestures and greatly
reduce their reaction time. The two strokes proceduralize into a single automated action,
like a form of “muscle memory.” As we describe in Section 4.6, we conducted a longitudinal
study to test this hypothesis.

At breadth-4, 2HS was just as accurate as the other menu designs, but at breadth-8, which
requires more precise motions and thus more careful coordination, 2HS was less accurate.
Nevertheless, accuracy remained above 82% across all conditions we tested and can improve
significantly with practice, which we show in Section 4.6.

Two-handed ordered marking menus are as fast as dominant-handed multi-
stroke marking menus and provide access to twice as many items. Although
we hypothesized (H2) that 2HO would be faster than the one-handed designs (1HR and
1HL) due to overlap in hand movement, we found that total time and accuracy were not
significantly different between 2HO and 1HR. The reaction times were faster for 2HO than
for 2HS, but slightly slower than for the one-handed menus. This result indicates that
planning finger movements takes more time for the two-handed menus. Since starting with
the right hand or left hand makes no significant difference on total time or accuracy for the
2HO design, both alternating orders are equally useful for selecting menu items.

Dominant-handed multi-stroke marking menus are faster than non-domsi-
nant-handed multi-stroke marking menus. Our results show for one-handed marking
menus, the right hand outperforms the left hand in total time for both the iPod Touch and
iGesture conditions, confirming hypothesis H3. All of our participants were right-handed, so
we expected the right, dominant hand to be faster than the non-dominant hand. Surprisingly,
we found no significant difference in accuracy between the right and left hand marking menus,
suggesting that the only penalty for using the non-dominant hand is in speed.

Stroke direction affects performance on the 1Pod Touch. When drawing a
single stroke on the iPod Touch, we found a significant difference between hands, with the
dominant hand faster than the non-dominant hand. We also found that stroke direction had
a significant effect on movement time. For each hand, participants were fastest at pulling
their thumbs up or inward with respect to the hand, and on-axis strokes were faster than

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 42

the neighboring off-axis strokes. For the slower stroke directions, the participants may have
been limited by the rotational constraints of the thumbs while holding the iPod Touch, but
when the participants could freely move their hands on the iGesture we found no significant
difference between hands nor any significant differences due to stroke direction.

Some stroke pairs are faster to draw than others. We also examined how different
groupings of stroke directions affect drawing speed. For the 4-2 layout, pairs of both vertical
strokes and both horizontal strokes tended to have faster average total times than the mixed
pairs. In the two-handed simultaneous condition, drawing bilaterally symmetric strokes
or strokes in the same direction was faster than drawing non-mirrored strokes. For the
8-2 layout, on-on and off-off pairs were faster than the mixed pairs for the two-handed
simultaneous design. On-on strokes were slightly faster than off-off strokes on the iPod
Touch.

Two-handed stmultaneous exhibits more temporal overlap than two-handed
ordered. For the two-handed conditions, the delay between the start of the first stroke and
the second stroke was significantly different between the simultaneous and ordered conditions
by about 200 ms. One direction for future work is to use this delay to distinguish which of
these two menu techniques the user is performing.

4.6 User Study 2: Longitudinal Evaluation

In our first study, we found that the significant improvement in movement time for the
two-handed simultaneous technique was offset by an increase in reaction time required to
process the stimulus and plan the hand movements. However, with enough practice, users
may require less time to plan movements as drawing two strokes at the same time becomes
more automatic. We hypothesized:

H/: With practice, the reaction times for the 1THR and 2HS techniques converge.
H5: With practice, the 2HS technique outperforms the 1HR technique in total time.

To test these hypotheses, we conducted a longitudinal study with five right-handed par-
ticipants (3 male, 2 female, between 24 and 32 years old) using the iPod Touch. We focused
the longitudinal study on the iPod Touch as handheld multitouch devices are more ubiq-
uitous than larger interactive surfaces like the iGesture. We gave each participant an iPod
Touch to use over five consecutive days. Each participant spent approximately 45 minutes
every day performing three blocks of 50 trials, using both the 1HR and 2HS menu techniques.
The participants first performed the trials using the 4-2 layout and then the 4-4 layout. We
used the same stimuli and feedback as in the first study. The participants received no prac-
tice trials and our analysis includes all data. As in the first study, our dependent variables
were reaction time, movement time, total time, and accuracy. Misses were counted similarly,
except the participants did not have to repeat missed sequences, as sequences were generated
randomly.

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU

SELECTION 43
1.0

1.6 I l
- | | THR 4-4l %0.8 1\ oS 44
1.2 - £ | — = HR-:l
= 1HR 4-2 '\l\,_____——«_{
5038 M 04 THR4-2
o 2HS 4-2 g

[a' s
0.4 0.2
0 Day 1 Day 2 Day 3 Day 4 Day 5 Day 1 Day 2 Day 3 Day 4 Day 5

1.0 100% -
— 1 . . RA2
208 l . [1HR4-4 = 542
o : 1 I — 2HS 4-4
E ST | 1
*':06 2HS 4-4 ‘;90/0 | 1HR4-4
c O
g o
S04 S }
3| TR <0

0.2 —_ I —

Ea— Ty
0 D 70%
ay 1 Day 2 Day 3 Day 4 Day 5 Day 1 Day 2 Day 3 Day4 Day5

Figure 4.14: Average time and accuracy (with standard error bars) for menu techniques 1HR
and 2HS and layouts 4-2 and 4-4, across five days. The baseline value of the accuracy graph
is 70%.

4.6.1 Longitudinal Results

As shown in Figure 4.14, the total, reaction and movement times all decrease with practice
while accuracy increases. Across both layouts 4-2 and 4-4, by day five, 2HS was 10-15%
faster in total time and 29-52% faster in movement time than 1HR. However, reaction time
remained 10-12% slower for 2HS than for 1HR, even after five days. Finally, on day five,
accuracy was between 92.4-96.8% for 2HS and between 91.2-98.8% for 1HR.

For each layout (4-2, 4-4) and dependent variable (total time, movement time, reaction
time, accuracy) we ran separate two-way repeated measures ANOVAs with day and menu
technique (1HR, 2HS) as factors. We found significant main effects (p<.05) in all but the
following cases: 1) for menu layout 4-2, day did not significantly affect movement time and
menu technique did not significantly affect accuracy, 2) for menu layout 4-4, neither day nor
menu technique significantly affected accuracy. We found no significant interactions in any
of the ANOVAs. More detailed numerical results is as follows.

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 44

4-2 Menu Layout

Total Time: By day five, the average total time was 805 ms for 1HR and 682 ms for
2HS, reduced from 932 ms and 823 ms respectively on day one. Menu technique (p=.005)
and day (p=.009) had significant effects on total time, but there was no interaction effect
(F4’16:O.308, p=869)

Reaction Time: By day five, the average reaction time was 590 ms for 1HR and 533
ms for 2HS, reduced from 552 ms and 633 ms respectively. The difference between 1HR
and 2HS reaction times dropped from 81 ms to 57 ms (29.6%). Menu technique (p=.012)
and day (p<.001) had significant effects on reaction time, but there was no interaction effect
(F4’16:O.907, p=483)

Movement Time: By day five, the average movement time was 315 ms for 1HR and
149 ms for 2HS, reduced from 380 ms and 190 ms respectively. The difference between
1HR and 2HS movement times dropped from 190 ms to 166 ms (12.6%). Menu technique
(p=.001) had a significant effect on movement time, whereas day did not (p=.277). There
was no interaction effect (Fjy14=1.263, p=.325).

Accuracy: By day five, the average accuracy was 98.8% for 1HR and 96.8% for 2HS,
increased from 95.2% and 94.8% respectively on day one. The day had a significant effect on
accuracy (p=.195) whereas the menu technique did not (p=.195). There was no interaction
effect (F)y16=1.758, p=.187).

4-4 Menu Layout

Total Time: By day five, the average total time was 1376 ms for 1HR and 1234 ms for
2HS, reduced from 1635 ms and 1559 ms respectively on day one. Menu technique (p=.008)
and day (p<.001) had significant effects on total time, but there was no interaction effect
(F416=0.820, p=.531).

Reaction Time: By day five, the average reaction time was 594 ms for 1HR and 676
ms for 2HS, reduced from 711 ms and 822 ms respectively. The difference between 1HR
and 2HS reaction times dropped from 111 ms to 82 ms (26.2%). Menu technique (p=.005)
and day (p<.001) had significant effects on reaction time, but there was no interaction effect
(Fy16=0.484, p=.748).

Movement Time: By day five, the average movement time was 782 ms for 1HR and 557
ms for 2HS, reduced from 924 ms and 737 ms respectively. The difference between 1HR and
2HS movement times dropped from 225 ms to 187 ms (16.9%). Menu technique (p=.001)
and day (p<.007) had significant effects on movement time, but there was no interaction
effect (F4716:0.389, p:814)

Accuracy: By day five, the average accuracy was 91.2% for 1HR and 92.4% for 2HS,
increased from 86.0% and 88.0% respectively on day one. Neither menu technique (p=.774)
nor day (p=.084) had a significant effect on accuracy. There was no interaction effect
(F4716:O.544, p:706)

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 45

>> M W €€ VA >e V> AV A> Ve >V A Ae <€V €A <>
Stroke Pairs

M <> YW >> << >< <A A< A> A <V V> AV VA >V Ve
Stroke Pairs

Figure 4.15: Average total time (with standard error bars) per stroke pair for the 4-2 layout.
For 2HS, pairs of strokes that are bilaterally symmetric or share the same direction (light
blue) are 18% faster to draw than the other pairs.

4.6.2 Longitudinal Discussion

Time and Accuracy: While we cannot accept our hypothesis (H4) that reaction times
would converge, we found that the difference in reaction times between 1HR and 2HS did
decrease significantly after five days. The decrease was 29.6% for the 4-2 layout and 26.2% for
the 4-4 layout, suggesting that time required to coordinate two hand movements diminishes
with practice. For the 4-2 layout there was no significant difference in movement time across
days. For the 4-4 layout reaction and movement time improved for both techniques, but the
movement time advantage for 2HS outweighed the reaction time advantage for 1HR. Menu
technique had a significant effect on total time, and by day five, total time was faster for 2HS
than 1HR by 15.3% for layout 4-2 and 10.3% for layout 4-4, confirming hypothesis H5. In
our initial study 2HS had a relatively low accuracy rate for the 4-4 layout (89.5%). Although
we did not find the day to have a significant effect on accuracy, the average accuracy did
improve from 88.0% to 92.4% after five days and there was no significant difference between
the two techniques. Together these results suggest that although 2HS may be more difficult
to use than 1HR at first, with moderate practice an expert user can access menu items more
quickly using 2HS than 1HR, while maintaining reasonably good accuracy.

Stroke Directions: Figure 4.15 shows the total time in sorted order for each of the 16
stroke pairs in the 1HR condition (top) and the 2HS condition (bottom). For 2HS we find

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU

SELECTION 46
1.0 100%
= 038 3
(<> 0
£ 06 > 90%
= c
5 0.4 3 80%
= 0.2 <
0 70%
Block 1 Block 4 Block 1 Block 4

Figure 4.16: Average total time and accuracy (with standard error bars) for the first and
last blocks for the 8-2 layout. The baseline value of the accuracy graph is 70%.

that drawing strokes that are bilaterally symmetric or in the same direction (translationally
symmetric), is 18% faster on average than drawing the remaining stroke pairs. For 1HR, we
find no large difference in total time between groups of stroke pairs, but the pairs in which
both strokes are drawn in the same direction are the four fastest.

Our 2HS results indicate that users are most efficient at drawing symmetric strokes and
are consistent with prior studies of two-handed motion control [65, 87]. Together these studies
suggest that people find it more difficult to draw pairs of asymmetric strokes than symmetric
strokes. However, the stimuli for the task may also affect performance. Balakrishnan and
Hinckley [11] and Franz et al. [38] have shown that users perform two-handed tasks more
efficiently when the stimuli are seen as representing a single task rather than two independent
tasks. We leave it to future work to investigate how the visual design of the stimuli might
affect performance.

4.6.3 Longitudinal Study: 8-2 Menu Layout

Based on the results of our longitudinal study on the breadth-4 menus, we conducted a
small follow-up experiment with three right-handed participants (2 male, 1 female, between
24 and 25 years old) to examine long term performance for the breadth-8 layout using menu
techniques 2HS and 1HR. Each participant performed four blocks of trials, where each block
consisted of three repetitions of the 64 stroke pairs in randomized order for each menu
technique. Again, the participants received no practice trials and our analysis includes all
data.

As shown in Figure 4.16, by the fourth block the total time was 15.4% faster with 2HS
than with 1HR and average accuracies were 89.6% for 2HS and 93.2% for 1HR. The speedup
was in line with our breadth-4 results. Moreover, the 2HS accuracy of 89.6% was much
higher than the 82.3% we saw in our initial study of the 8-2 layout, suggesting that practice
can improve accuracy. Although 2HS was not quite as accurate as 1HR, examining the
individual stroke pairs for 2HS (Figure 4.17), we found that when the left stroke was parallel
to the SW-NE axis or the right stroke was parallel to the SE-NW axis accuracy (highlighted
in orange) dropped to 86.6%, while the remaining 36 stroke pairs maintained an accuracy

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION A7

100%
80%
60% |
40%
20%

0

100%
80%
60%
40%
20%

0

Accuracy (%)

AN A> A€ A7 SA VA AN €7 A A€ AV KK >7 SL >€ N7 N> N€ VA €V RN K€ A7 >> AL VW €> ®A KT K> RV ®K

2HS - 8-2 Stroke Pairs

Figure 4.17: Average accuracy (with standard error bars) for all stroke pairs in the 8-2 layout
using the 2HS technique. The pairs where the left stroke is parallel to the SW-NE axis or
the right stroke is parallel to the SE-NW axis are highlighted in orange. Note that standard
error bars have zero radius when all three participants had the same accuracy.

1.0
08 -
o v
£06 £
= =
© C
204 2
= g
0.2 g

Block 1 Block 2 Block 3 Block 4

Block 1 Block 2 Block 3 Block 4

©
"

100%,

o
»

Movement Time (s)
o o
N w
Accuracy (%

©
=

0 70%
Block 1 Block 2 Block 3 Block 4 Block 1 Block 2 Block 3 Block 4
Figure 4.18: Average times and accuracy (with standard error bars) for menu techniques

1HR and 2HS and menu layout 8-2, across four blocks of trials. The accuracy graph’s baseline
value is 70%.

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 48

1.2
1.0
0.8
0.6
0.4
0.2

0
1.2
1.0
0.8
0.6
0.4
0.2

0

VYV 3> AV 77 NN AL VA V> €€ DV KKk Sk V€ >€ Nk €> > SA kN K7 AV V& VA AR LR A> 7K N> wya 7N SN WK

Total Time (s)

NV N€ LV NT AL M AR TN €L 7€ A€ K€ A LA > 3N KV €A AR R €V K> KK €K €7 KL k€ ®A Lx AT >k €N

1HR - 8-2 Stroke Pairs
1.2

1.0
0.8
0.6
0.4
0.2

0
1.2
1.0
0.8
0.6
0.4}
0.2

0

€> KA AA LN YW NN NKL D€ €€ KK 77 KLk DX kA >> €4 NK 7K K> VA AT >A

Total Time (s)

VA €A VA K€ >V A€ AL VE KL V€ AV NA A> A AL 7€ 7N AV k€ AR KA N€ N> NV KA A £EX VR KV £> 7> kv

2HS - 8-2 Stroke Pairs

Figure 4.19: Average total time (with standard error bars) for all stroke pairs in the 8-2
layout using the 1HR and 2HS technique.

at 95.0%. Our results confirm Karlson et al.’s [63] observation that for the right thumb,
SE-NW strokes are the most difficult to draw. Just as for the breadth-4 layout, we found
that pairs of bilaterally symmetric or same-direction strokes (731 ms) were faster to draw
than other pairs (815 ms).

We present more detailed numerical results in Figure 4.18. Complete stroke pairs total
time and accuracy are presented in Figure 4.19 and Figure 4.20 respectively.

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 49

100%
80%
60%

_40%

S 20%

0
100%
80%
60%
40%
20%
0

%

Accuracy

AL V€ €> AT A> AN A> AR SA DA N> VA ¥> VK& KN €A €& KK AV Ak A€ 77

1HR - 8-2 Stroke Pairs

AN AL DK YV kA KA kY kik €A €V

100%
80%
60%

_40%

S 20%|

%

acy
o

—

100%
80%
60%
40%
20%

Accu

AN A> A€ A7 SA VA AN €7 A A€ AV KK >7 SKL >€ N7 N> N€ VA €V RN K€ A7 >> AL VW €> ®A R K> RV ®K

2HS - 8-2 Stroke Pairs

Figure 4.20: Average accuracy for all stroke pairs in the 8-2 layout using the 1HR and 2HS
technique. For 2HS, the pairs where the left stroke is parallel to the SW-NE axis or the right
stroke is parallel to the SE-NW axis are highlighted in orange. Note that standard error
bars have zero radius when all three participants had the same accuracy.

4.7 Design Guidelines

Based on our results we make the following design recommendations. Two-handed simulta-
neous multi-stroke marking menus provide the fastest performance with good accuracy at
breadth-4 and acceptable accuracy at breadth-8. The most frequently used commands should
be bound to pairs of bilaterally symmetric strokes or same-direction strokes as they are the
fastest to perform. For handheld thumb-operated devices it may be possible to improve
breadth-8 accuracy by avoiding the use of the SW-NE directions for the left thumb and the
SE-NW directions for the right thumb. Alternatively, designers may bind commands that
require conscious commitment, such as deletion or quitting, to these pairs that are harder
to perform.

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 50

With a one-handed marking menu operated by a thumb, the right thumb is faster than
the left thumb. Within the right-handed menu the most frequently used menu items should
be placed in the upper right quadrant of directions, and within the left-handed menu, the
most frequently used menu items should be placed in the upper left quadrant, as those
directions had the fastest movement times.

4.8 Display Menu Items for Novice Users

Although our studies focused on expert performance, real-world usage of our two-handed
designs requires methods for training novice users in the mapping between stroke pairs and
menu items. We offer two novice-mode visualizations that facilitate exploration of the menu
items bound to stroke pairs.

4.8.1 Hierarchical Display Menu

In a hierarchical display (Figure 4.21 Left), the left hand selects the parent menu item by
dialing through the items [149]. The right menu continuously updates to show the corre-
sponding child menu items. The closest parent and child menu items are always highlighted
to indicate which option the user has currently chosen. Users can continuously explore all
possible menu items without backtracking or lifting up any fingers. However, navigating a
four-stroke menu would still require backtracking if the wrong initial pair was selected.

4.8.2 Full-Breadth Display Menu

In a full-breadth display (Figure 4.21 Right), all the items are presented [147], and the left
hand specifies the menu cluster, while the right hand specifies the item within a cluster. The
cluster that the left hand is currently selecting is highlighted as feedback to the user. The user
can dynamically switch to any of the options without lifting up any fingers. This display can
be particularly useful when there is no logical way to group items into equally-sized clusters.

4.9 Applications

We have shown that our two-handed multi-stroke marking menus are viable menu selection
techniques. Although many iPhone/iPod Touch applications and games use two-thumb
controls, we have not yet seen two-thumb marking menus on these devices. We believe many
such handheld applications could benefit from our two-thumb marking menus and we present
several usage scenarios.

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU

SELECTION

Map

Ocarina —I— Torch

51

Healing

Items Axe
Polymorph Spyglass Axe
Fireball + Sprint Sword —|— Bow
Spells Le——2gWeapons Sword R Bow
Frost Armor Rejuvenation Staff
Potions Staff [—_ Antidote —|— Energy oR
Healing
(2 (2 Map
Ocarina —|— Torch
Items Rejuvenation Polymorph Axe
4 Spyglass
. Fireball —I— Sprint Sword + Bow
Spells L Weapons Antidote eR Energy
I Frost Armor Rejuvenation Staff
Potions Healing L Antidote —f— Energy R
I Healing
© © Mep
Ocarina —I— Torch
Items Rejuvenation Polymorph Axe
Y Spyglass
. Fireball + Sprint Sword —I— Bow
Spells L Weapons Antidote . 9R Energy
I Frost Armor Rejuvenation Staff
Potions Healing LI Antidote —|— Energy lR

Hierarchical Display Menu Full-Breadth Display Menu

Figure 4.21: Left: Hierarchical Display — The left hand explores the parent menu items by
dragging through menu items, and the child menu items continuously update for the right
hand. Right: Full-Breadth Display — The entire menu space is displayed, and the left hand
chooses the four-item cluster, while the right hand chooses the item within a cluster.

4.9.1 Dual-Joystick Navigation

Many iPhone games require players to hold the device in landscape mode and use two
virtual joysticks operated by the thumbs, one to control movement and the other to control
character orientation. Our two-thumb techniques could be integrated into such games and
used to trigger commands such as diffusing or disposing of mines in a mine disposal game
(Figure 4.22). For example, we could integrate our marking menus by overlaying them on
the joysticks. In this case, users would need to use some distinguishing gesture to indicate
whether they wished to invoke the marking menus or use the joysticks. For instance, quick
strokes might indicate menu selection while longer strokes might indicate joystick-based

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 59

Figure 4.22: In this mine disposal game, the user moves a robot using two joysticks. The left
joystick controls movement and the right joystick controls orientation. Two-handed marking
menus invoke commands as shown in the four screenshots and can be executed anywhere on
the screen.

movements. Another option would be to interpret all strokes that lie outside the joystick
regions as menu commands. However, this approach might require users to repeatedly move
their hands on and off the joystick regions. We utilize the first approach and interpret
strokes under 0.25 seconds in duration as menu commands. Because our techniques are
eyes-free, expert users can keep their focus on the current task and select commands without
visually searching for soft buttons to select a command. Examining data from a small,
informal sample of two members of our lab, we have found that expert users can switch from
joystick-based movement to two-handed menu selection and back to movement in less than
0.5 seconds.

4.9.2 Text Editing

In text-editing mode on touchscreen devices such as the iPhone, the keyboard takes up half
the screen, leaving little room for text formatting options. We have integrated our two-
handed marking menus into a text-editing application allowing users to quickly change the

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 53

cut cut

paste paste
‘Wdﬁ'

redo redo

>
Hits: 0 Misses: 0 Survived: 0 Hits: 0 Misses: 0 Survived: 0

Figure 4.23: In the Falling Blocks game, the user must destroy each block by drawing the
corresponding strokes. Left: Novice Mode — Strokes are shown. Right: Expert Mode — No
strokes are shown.

attributes of the text (Figure 4.1) by selecting from a two-handed marking menu located
above the keyboard, rather than through soft buttons.

4.9.3 Falling Blocks Game for Training Novice Users

Touch-typing is a complex task that requires coordination of ten fingers. Novice typists
often use typing games to become proficient. Similarly, we offer a Falling Blocks game to
train novices to quickly draw two directional strokes simultaneously to execute commonly
used system commands. In the game, colored blocks continually fall down the screen, and
each block is associated with a command and a stroke pair. Users must execute the correct
strokes to destroy each block before it falls to the bottom of the screen. In novice mode, the
strokes are shown to the user, but in expert mode, the user must remember the mapping
between commands and strokes (Figure 4.23).

The iPhone App Store provides an opportunity for researchers to introduce applications
to the general public. As an experiment, we released Block Blender, a variant of our Falling
Blocks application, on the App Store. In the game, blocks continuously fall down the screen
and the player must draw the specified pair of strokes to destroy the block. When the stack
of blocks reaches the top of the screen, the game is over. We had nearly 1000 downloads
after the first seven weeks of deployment. Users could opt to send scores and data from
their completed games back to our servers. Of the scores we received, two players destroyed
at least 1000 blocks with 93.7% and 85.1% accuracy. Six players were able to outscore
the first author’s best score of 184, each doing so in six tries or less. These players were
able to stay alive with a new block generated every 0.82 seconds while performing pairs of
strokes with average movement times between 0.13 second and 0.29 seconds. Although this
application demonstrates that some players can quickly pick up the skill to draw pairs of
strokes simultaneously and outperform even the first author, most players did not produce
such high scores. These players may still be learning the mechanics of the game.

CHAPTER 4. DRAWING DIRECTIONAL STROKES BIMANUALLY FOR MENU
SELECTION 54

4.10 Conclusion

Along with our multitarget selection study, we have shown the value of bimanual interaction
when using multitouch for target selection and drawing directional strokes. Two hands
can divide and conquer the interaction space while saving time by performing movements
in parallel. We believe techniques like two-handed marking menus that leverage bimanual
interaction are a step towards exploiting the full potential of multitouch devices. In the next
chapter, we present a multitouch application for building virtual environments for computer-
animated films, where we often utilize bimanual interaction in the design of the gestures.

%)

Chapter 5

Designing a Professional Multitouch
Application

The advantages of multitouch input over mouse input include the benefits of direct-touch
selection and bimanual interaction, which we have demonstrated in our user studies. De-
velopers should leverage these benefits when designing a multitouch gesture. Developers
should also ensure that the user can comfortably coordinate multiple fingers in a multifinger
gesture. Although a single gesture might be relatively easy to design, it is only one of many
gestures in a fully functional multitouch application. Thus, building an entire gesture set
also requires careful consideration to create distinguishable gestures that are both easy to
remember and easy to perform.

We investigate the design and development of a gesture set for a professional-level mul-
titouch application. While most multitouch applications are designed for mobile devices
and content browsing, we focus on using multitouch for creating content currently done on
a traditional desktop workstation with a mouse and keyboard. In particular, we examine
whether the benefits of multitouch input can improve the task of the construction of virtual
organic sets for computer-animated feature-length films.

The production of computer-animated films, such as Pixar’s Toy Story and DreamWorks’
How to Train Your Dragon, consists of many distinct stages, commonly referred to as the
production pipeline. Set construction is one of these stages. Similar to a physical set for
live-action films, a virtual set is the environment in which animated films are shot. Set
construction artists select and position geometric models of objects, such as furniture and
props to build manmade environments, and vegetation to build organic environments.

Today, many animation studios use off-the-shelf modeling and animation packages (e.g.,
Maya, 3ds Max) for set construction (Figure 5.1). Despite more than a decade of interface
refinement, the process required to build a set using these mouse and keyboard interfaces is
long and tedious. A set construction artist commonly places hundreds if not thousands of
3D objects in the set, but is usually limited to placing one object at a time. Moreover, to
properly place a single object in 3D space, the artist often performs several individual 3D
manipulations, such as translation, rotation, and scale. However, the mouse only has two

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 26

Figure 5.1: Constructing a set with Maya: (a) The set construction artist creates a model
catalog by lining up the models he plans on using away from the terrain. (b-c) He then
makes duplicates of the objects and translates them to the region of the terrain where he is
constructing the set. (d-f) To translate an object, he first selects the object, then switches
to translation mode with a hotkey, and finally picks and drags the arrow manipulator. (g)
He translates, rotates, and scales objects one by one until he completes the set.

degrees of freedom, so the artist cannot manipulate more than two spatial parameters of the
object at a time. In addition, existing interfaces introduce significant overhead: the artist
must manage modes, select small manipulators, and traverse long distances with the mouse.

We investigate whether Fden, a new organic set construction application that leverages
multitouch input, can address these concerns. With two hands, the artist can work in two
different parts of the screen at the same time, thereby reducing the need to travel back and
forth between spatially distant screen regions. The artist may also become more efficient by
performing simultaneous operations, one with each hand. Furthermore, multitouch work-

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 57

stations can sense the position of each finger and thus two hands provide many degrees of
freedom of input. Multitouch interfaces can use these many degrees of freedom to allow users
to specify both target object and operation, while manipulating more than just two of the
object’s spatial parameters at a time. As a result, the application can reduce the number
of modes and the number of individual steps needed to complete the placement of a single
object.

Despite these advantages, building a multitouch application presents design challenges,
such as choosing gestures that are efficient, memorable, and comfortable to perform. There
are many different ways to map multitouch sensor data to operations, and the best gesture
for a given task is often not obvious. An application might also require a large set of
operations, and in order for the application to unambiguously interpret the user’s actions,
no two gestures can be the same. Finally, touch input has several drawbacks that can reduce
the user’s efficiency, including imprecision due to the fat finger problem [110] and occlusion
of content by the hands [127].

To address these challenges, we built Eden while working in close collaboration with Tom
Miller (TM), a veteran set construction artist at Pixar Animation Studios. We relied on his
feedback and experience to create a set construction application suitable for professional-
level use. From our design process, we found that restricting Eden to support one operation
at a time allowed us to design simple, easy to learn gestures that split the workload across
two hands. Using Eden, TM has built a set for a feature film and found the system to be
more efficient and more pleasant than Maya.

5.1 Organic Set Construction

Set construction is the process of selecting and positioning virtual objects to build a virtual
environment inhabited by characters of a computer-animated film. Before building a set,
the set construction artist first works with the story and art departments to determine the
aesthetics and rough layout of the set. Then the set construction artist works with the
layout department, which is responsible for placing the foundation of the set by positioning
the terrain and any key architectural elements that help dictate the action in the scene.
The set construction artist then populates the sets with the geometric objects built by the
modeling department to flesh out the world. The layout department also provides the set
construction artist with shot cameras, which are used to make the final renders. Using the
shot cameras, the set construction artist “constructs to camera,” to avoid building sections
of the set that will not be seen in the final film. Throughout this process, the set construction
artist continues to work iteratively with the story, art, and layout departments to finalize
the set. Once the director approves the set, it is then sent to the animation department.

To gain a better understanding of the set construction process, we observed TM, who
has over 10 years of set construction experience at Pixar Animation Studios. TM specializes
in building organic sets, such as forests, parks, and other outdoor environments consisting
primarily of vegetation (Figure 5.2).

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 58

Figure 5.2: An organic set in Pixar’s Up. Copyright Disney/Pixar.

To build a set, TM traditionally uses Autodesk Maya [7], a 3D modeling and animation
package. His workflow, whether for manmade or organic sets, typically proceeds as follows
(Figure 5.1). First, TM loads the objects he plans to use for a set and lines them up in a
location away from the terrain. These objects serve as his model catalog. To add objects to
the set, he duplicates them in the model catalog area and moves them into the region of the
set he is working on. Then using the Maya translation, rotation, and scale manipulators,
he positions and orients each object into place. To translate an object, for example, he
selects the object, hits the ‘W’ hotkey to enter translation mode, and picks the appropriate
arrows on the translation manipulator (Figure 5.1e,f) to drag the object into position. He
can inspect the set by using the default Maya camera controls: while holding the ‘alt’ key,
a left mouse button drag performs arcball rotation, a middle mouse button drag translates
the camera along the view plane (truck and pedestal), and a right mouse button drag moves
the camera forward and back (dolly). He also uses the shot cameras to construct to camera.
He repeats this process, working region by region, until he completes the set.

Our original intent was to build a multitouch application for general set construction.
However, we found that the imprecision of touch makes the construction of manmade sets
particularly difficult. Manmade environments are often structured and rigid. They contain
highly regularized elements like furniture arrangements, books on a shelf, or city streets.
The positions and orientations of objects often depend precisely on the positions and ori-
entations of other objects. Placing these objects requires precision and fine-tuning, which

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 59
Drawe_r

Model Catalog

Buttons
—Shot Cam
—Select
—Duplicate
| — Delete

— Magnify
— Freeze

Stroke Pad -

—Camera

Figure 5.3: The interface of Eden consists of the main content view, a drawer containing the
model catalog and stroke pad overlaid on the left, and two matching columns of buttons.

is problematic as touch is imprecise and the artist’s hands can obscure the content being
manipulated.

Instead, we chose to first target organic set construction, since it is less affected by preci-
sion issues. According to TM, he is less concerned about precision when constructing organic
sets because he places vegetation coarsely compared to manmade objects. In addition, he
often places a large amount of vegetation in an organic set, so he can frequently make use
of the fast coarse targeting of direct-touch [37, 69, 120] to indicate the positions of vegeta-
tion. We can then apply the experience we gain from designing a multitouch application for
organic set construction to the more involved task of designing a multitouch application for
building general sets.

5.2 Eden

The interface of Eden (Figure 5.3), our multitouch set construction application, is composed
of a main view, a virtual drawer, and two columns of buttons. The main view presents the
scene through a perspective camera and the artist can directly manipulate objects through
this view. We designed the main view to take up virtually the entire screen to help keep the
artist’s focus on the content. On the left side of the interface is the drawer, which houses
the model catalog and the stroke pad. The model catalog consists of objects available to the
artist for a given session. On the stroke pad, the artist can draw single-stroke symbols that
execute infrequent commands. If the artist wants to maximize the content area, he can slide
the drawer closed. In addition, we provide two matching columns of buttons that map to
additional set construction commands. We repeat the buttons on both sides of the interface
to allow either hand to invoke them.

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 60

Figure 5.4: Constructing a set with Eden. (a) The set construction artist starts with the
empty terrain. (b-¢) Using the model catalog in the drawer, the artist can touch one finger
on the model, and with a second hand touch the locations for where to place copies of the
model. He taps several times on the boulder to quickly add nine bromeliads. (d) He makes
additional adjustments to each bromeliad by performing an arcball rotation for example. (e)
He continues adding and manipulating objects until the set is complete.

TM’s process for building a set with Eden typically proceeds as follows (Figure 5.4): TM
starts a new session by loading the terrain and key architectural elements provided by the
layout department into the set. He then creates a model catalog by drawing an ‘L” in the
stroke pad to open a panel, from which he chooses the geometric objects he wants to add to
the model catalog. After building the catalog, he adds objects into the set. He might touch
a tree in the model catalog and make multiple taps on the terrain to indicate the locations at
which to plant each tree. If he is dissatisfied with how a tree looks he can translate, rotate, or
scale the tree by performing the corresponding gesture; we describe the object manipulation
gestures in Section 5.2.2. In addition to using the default camera to inspect the quality of
the set, TM also loads in shot cameras via a stroke command so he can construct to camera
by checking the quality of the set through the shot cameras’ views. TM continues to place
objects and adjust them until he is satisfied with the set.

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 61

(@) (b) (@

Figure 5.5: (a) One-touch using a single finger. (b) Two one-touches using two fingers. (c)
Conjoined touch using two fingers next to each other.

5.2.1 Design Principles

Eden supports a variety of object manipulation and camera control operations. Our challenge
is to design gestures that map the many degrees of freedom of multitouch input to these
operations and their parameters. Working with continuous feedback from TM, we went
through several iterations in the design of the gesture set for Eden. We evaluated which
aspects of the gestures TM found effective and identified the following design principles for
the creation of our final gesture set.

e Use simple gestures for frequently used operations — Gestures that require fewer
touches and fewer movements require less coordination and are faster to perform. We
bind such simple gestures to the more frequently used operations to increase overall
efficiency.

e Conjoined touch as a modifier — To increase the size of the gesture space while
keeping gestures simple, we introduce the conjoined touch into our gestures. A one-
touch is a standard touch where a single finger touches the screen and yields a single
2D contact point. We detect a conjoined touch whenever two touches are adjacent
to each other. Specifically, the two touches are combined into a single instance of a
conjoined touch where the centroid of the two touches serves as the 2D contact point
for the conjoined touch. Thus, two fingers on the same hand can represent three static
states: one-touch, a pair of one-touches, and a conjoined touch (Figure 5.5). We can
use a conjoined touch instead of a one-touch to differentiate two operations similar in
function, while maintaining the same underlying motion of the hands.

e One operation at a time — We initially designed one-handed gestures for object
manipulation so the artist could perform two operations simultaneously, one with each
hand. However, we found that TM concentrates on manipulating a single object at a
time and seldom requires the ability to manipulate two objects at a time. According
to Raskin [112], a person only has a single locus of attention, and thus can only focus
on the position of one object at time, making the simultaneous manipulation of two
objects mentally difficult. Moreover, allowing only one operation at a time reduces the
ambiguity of interpreting touch input. For instance, if we had permitted simultaneous

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 62

gestures, then the application could interpret two touches as either two simultaneous
one-touch gestures or a single gesture that uses two touches.

e Split touches across both hands — Since we only support one manipulation at a
time, when a gesture uses more than one touch, we split the touches of the single
gesture across both hands for two reasons. First, fingers on separate hands are not
constrained by the palm, which makes them more mobile than fingers on the same
hand. This increased mobility makes performing complex motions easier and more
comfortable. Second, assigning touches to a second hand can reduce the amount of
occlusion of the object being manipulated as the second hand can perform movements
in an indirect fashion away from the object.

e Use at most two fingers from each hand — Although a single hand supports up
to five touches, anatomical constraints of the hand limits the flexibility of each touch.
For example, the middle and ring fingers on the same hand cannot move arbitrarily
far apart. In Section 3.2, we found that participants rarely used fingers other than the
two middle and index fingers on each hand. The more fingers a gesture requires, the
more complicated and uncomfortable the gesture can become. Therefore, we designed
gestures that limited the number of fingers used to at most two per hand.

e Interchangeability of hands — For bimanual interaction, Guiard assigns fixed roles to
the hands in his Kinematic Chain Model [45]: the non-dominant hand sets the frame of
reference while the dominant hand performs the primary action. We, however, permit
the artist to begin an operation with either hand. Since an object can be located
anywhere on the screen, interchangeability of the hands allows the artist to choose the
most convenient hand to manipulate an object.

e Motion of gesture reflects the operation — If the motion of the gesture is similar
to the effect of the operation, then the artist can more easily guess how the gesture
will affect the target object. Also, the association between motion and operation can
help the artist recall gestures. For example, the motion of the popular two-finger pinch
gesture for photo resizing suggests the corresponding operation: reducing the distance
between the two fingers reduces the photo size, while increasing that distance increases
the photo size.

e Combine direct and indirect manipulation — Direct-touch combined with direct
manipulation allows the artist to touch and manipulate a virtual object as one might in
the physical world [113]. A drawback, however, is the hands occlude the object they are
manipulating. Using indirect manipulation, the artist can perform movements away
from the target object, so the hands occlude less of the object.

e Control at most two spatial parameters at a time — To properly place an object
within a set, the artist must be able to adjust the object’s position, orientation, and
size. We had intended to design gestures that allow an artist to manipulate more

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 63

than two spatial parameters of an object at a time. However, TM prefers having more
individual control of these spatial parameters, so each of our gestures controls just one
or two spatial parameters of an object. Research has also shown that even with a six
degree of freedom input device, users perform translation and rotation separately [85].

5.2.2 Object Manipulation

Eden supports eight operations for object manipulation that utilize two types of touches:
one-touch and conjoined touch. In Eden, the world is oriented such that the x and y axes
correspond to the horizontal ground plane, and the z-axis corresponds to the up direction.
As shown in Figure 5.6, the object manipulation operations and gestures consist of:

e x-y translation — a conjoined touch on the object, then drag

e 7z translation — a conjoined touch on the object, together with a one-touch drag up
and down

e arcball rotation — a one-touch on the object, then drag

e local z rotation — a one-touch on the object, together with a second one-touch drag
left and right

e world z rotation — a one-touch on the object, together with a conjoined touch drag
left and right

e uniform scale — a one-touch on the object, together with a two-touch pinch

e one-dimensional scale — a one-touch on the object, together with a conjoined touch
drag on the bounding box face perpendicular to the local scaling axis

e throw-and-catch — a one-touch on the object, and a second one-touch tap at another
location

We tailored the set of operations for organic set construction to support the operations
most useful to TM. A set construction artist typically uses separate x and y translations
to carefully align manmade objects with each other. For organic objects, however, TM
finds controlling both of these translational degrees of freedom at the same time to be
more efficient. Thus, we support simultaneous x-y translation, instead of separate x and y
translations. We also provide a separate z translation to give TM full 3D positional control.

In addition to positioning each object, TM also adds variation to each object by rotating
and scaling it. For example, he can build a grove of oak trees replicating just one oak tree
model, and rotate and scale each copy to make it appear different from the other trees. TM
needs just enough rotational control to tilt each object off the world z-axis and spin it about
its local z-axis to make the object appear unique. Therefore, arcball rotation and z rotation

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 64

X-Y Translation Z Translation

Local Z Rotation

Iobohe

World Z Rotation
Uniform Scale

Fen Fa

One-Dimensional Scale
%‘\ R

Figure 5.6: Set of object manipulation gestures.

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 65

are sufficient for specifying the orientation of an organic object. For some objects such as
rocks that do not have a natural orientation, we provide world z rotation. We also include
both uniform and one-dimensional scaling along the object’s local axes, to provide additional
methods to add variation to an object.

To help TM transport objects across long distances, we provide the throw-and-catch oper-
ation. Mouse-based interfaces often require dragging to transport an object from one location
to another, as typically exhibited in the drag-and-drop technique. The Boomerang [74] tech-
nique for use with a mouse allows the user to suspend the dragging component by using a
mouse flick gesture to throw the object off the screen. The user can later catch the object to
resume dragging. With multitouch throw-and-catch, TM teleports an object by specifying
the source and target locations simultaneously, thus eliminating the time needed to drag the
object.

The gestures bound to object manipulation operations all require the artist to first use
direct-touch to select an object for manipulation with either a one-touch or a conjoined
touch. The most frequently used operations should be the simplest to perform, so arcball
rotation and x-y translation only require the first touch to select the object and then a drag
to manipulate it. For the remaining gestures, the artist uses both hands with no more than
two fingers per hand. He selects the object with one hand, and then with the second hand,
he adds touches away from the object to perform indirect manipulation. For each object
manipulation gesture, the artist needs only to select the object and place any additional
touches eyes-free to specify the object, operation, and parameters. In Maya, however, the
artist needs to select a mode and sequentially target the object and manipulator.

To help make these gestures easy to remember, we used type of the first touch (one-touch,
two-touch or conjoined) to indicate the category of manipulation. A conjoined touch on the
object always begins a translation and a one-touch on the object begins either a rotation
or a scale. When possible, we designed the motion of a gesture’s second or third touch
to reflect the motion of the object being manipulated. For example, translation along the
z-axis moves an object up and down in screen space, so the second touch of the z translation
gesture moves in an up and down motion. The second touch of the z rotation gesture moves
side to side, which provides the sensation of spinning the object about a vertical axis. The
second hand of the uniform scale gesture performs a pinching motion, which is commonly
used for resizing photos on multitouch devices.

5.2.3 Camera Control

It is essential to provide a set of camera controls in Eden so the artist can inspect the scene
from different angles. To control the camera, the artist first holds down the camera button,
which invokes a quasimode [112] in which Eden interprets any additional touches as a camera
control gesture. This technique is analogous to holding down the ‘alt’ key in Maya [7] to
invoke camera control. We designed our camera control gestures to be similar to object
manipulation gestures so they would be easier to remember. A one-touch drag rotates the
camera in an arcball fashion, as it does for object manipulation. A conjoined touch drag

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 66

Figure 5.7: To add an object using throw-and-catch, the first finger selects the model and
the second finger taps the position to place it.

translates the camera along the view plane (truck and pedestal), which is the same gesture for
the planar translation in object manipulation. Lastly, we used the two-touch pinch gesture
to move the camera forward and back (dolly), which is similar to the pinch used for scaling
an object. We also included view direction rotation (roll) using the same two touches as
dolly, as the orientation of the two fingers maps well to the camera’s orientation. While
holding the camera button, the artist can also choose a custom camera pivot by tapping on
the scene or the artist can frame on an object (i.e., position the camera to provide a close-up
view of the object) by tapping the object with a conjoined touch.

In an early iteration of Eden, we distinguished camera control from object manipulation
not by a quasimode, but by touch location. If the first touch did not hit an object, then
the system interpreted the touches as a camera control gesture, otherwise it interpreted the
touches as manipulating the touched object. However, this method had a major flaw as
objects could easily fill the entire view, making camera control impossible.

5.2.4 Adding Objects

The artist can add an object to the set using throw-and-catch. Specifically, he selects and
holds the object in the model catalog to throw with one finger and specifies the destination
to catch the new object instance by tapping with a second finger (Figure 5.7). The base of
the new object rests directly on the terrain or the closest object underneath the touch. This
technique allows the artist to quickly drop a pile of shrubs onto the terrain, for example.
The artist can even use all five fingers to place five new objects with one action, although in
practice it could be difficult to position all five fingers in the desired configuration. Since no
two objects are identical in nature, if the user selects an object in the model catalog with
a conjoined touch, we add a small amount of randomness in scale and orientation to the
placed object.

In addition to adding objects from the model catalog to the set, the artist can throw a
copy of an object from the set into the model catalog. To store a new object, the artist holds
an object in the scene with one finger and then taps inside the drawer with a second finger.
Adding objects into the model catalog allows the artist to set the size and other parameters

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 67

(a) (b) — (©

Figure 5.8: (a) One-touch to invoke quasimode. (b) Swipe on button triggers secondary
action. (c) Conjoined touch to make mode explicit.

of the object and save it for future use. For example, he can scale up a rock object to the size
of a boulder and then save it to the model catalog using this throw-and-catch technique.

5.2.5 Additional Commands

We incorporate quasimodes and stroke-recognition to support additional set construction
commands.

Quasimodes and Buttons

Quasimodes in our application have the general advantage of keyboard-based quasimodes:
the muscle tension needed to hold a key or button down reminds the user that a mode
is currently invoked (Figure 5.8a). In addition to camera control, we use quasimodes for
various secondary operations that TM finds useful for organic set construction. Although
we intended to avoid modes, quasimodes allow us to reuse simple gestures thereby keeping
gestures easy to perform. The simplest gesture is a tap, and touch-based interfaces are
particularly good for tapping on objects [37, 69, 120]. By holding down one of the quasi-
mode buttons (Figure 5.3), the artist can simply use another finger to tap on objects to
freeze /unfreeze, delete, duplicate, or group select them.

We augment our buttons in a number of ways. We place descriptive icons on the buttons
so the artist can recognize the icon, whereas with a keyboard the artist would need to
memorize key bindings. More importantly, a user can perform gestures directly on the icon.
For example, if we have saved camera positions, a swipe through the icon (Figure 5.8b)
can cycle back and forth between the saved cameras in a manner similar to Moscovich’s
Sliding Widgets [97]. In addition, a conjoined touch tap on the camera icon (Figure 5.8¢)
can activate persistent camera mode, where the application only recognizes camera control
gestures even if the camera button is not held down. Although we avoided regular modes,
we provide camera mode so the artist can keep a hand free when only inspecting a set.

To make the buttons easy to access, we carefully considered their layout. Our multitouch
screen sits almost horizontally, so in order to minimize the reach needed to hit buttons, we
placed the buttons towards the bottom of the screen. Moreover, we put the same set of

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 68

Method

+Clear
+Commands
+DefaultSet
+Deselect
Fullscreen
+Group
+LoadModels
+LoadShotCam
+Redo
+ResetCamera
+Undo
Ungroup

(Done) (unbind) (Bind)

A

(a) (b)

Figure 5.9: (a) Stroke pad. Drawing a stroke executes the corresponding command. (b)
Stroke binding panel. The left panel displays the stroke bound to the highlighted command
in the right panel. The artist can choose his own stroke by drawing a new stroke in the left
panel.

buttons on both sides of the screen to allow either hand to initiate a quasimode. We also
made our buttons larger than the width of a finger to provide easy targeting.

Stroke Commands

In mouse and keyboard interfaces, commands are typically executed with hotkeys and menus.
To keep the artist’s focus on the content, we avoided cluttering the interface with buttons
or requiring the artist to navigate through menu hierarchies. Instead, the artist can exe-
cute commands by drawing single-stroke symbols in the stroke pad of the drawer (Figure
5.9a). For example, drawing an ‘L’ opens a load model panel, whereas drawing a left arrow
performs undo. The stroke pad interprets any touch as a potential stroke command, which
allows the artist to execute single-stroke commands that do not conflict with default object
manipulation operations. Since the stroke pad is large and always in the same location, the
artist can easily target the pad and draw a stroke with the left hand. Strokes can be difficult
to remember, so the artist can define his own strokes for the supported commands, using
a stroke binding panel (Figure 5.9b). We use the dollar gesture recognizer [139] for stroke
recognition.

5.3 Qualitative Evaluation

We asked TM to evaluate his experience using Eden to build a set for a feature film developed
by Pixar Animation Studios. We also asked a second set construction artist who has not
previously used Eden to evaluate the system from the perspective of a novice user.

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 69

5.3.1 Apparatus

Eden runs on the same multitouch workstation that we used in Chapter 3. The size of the
screen is 72.5 x 43.5 cm with a resolution of 1280 x 768 pixels. The artist interacts with the
table by standing in front of the screen, which is mounted at a 23 degree incline. For text
entry the artist uses a keyboard connected to a terminal next to the multitouch workstation.
Text entry is reserved for infrequent actions such as naming a new set before saving it.

5.3.2 Veteran User Experience

Over the course of two 30-minute sessions, TM used Eden to build a set consisting of 136
trees for the feature film. He had built the same set previously in Maya, but he and his
supervisor found no difference in quality between the two sets. We summarize his experience
and evaluation of the system.

Object manipulation: According to TM, the rotation and scaling gestures on Eden are
particularly effective because he does not need to break object selection and manipulation
into separate steps. In Maya, he must first select the object to manipulate and then carefully
pick a small manipulator to adjust the object. In Eden, both the object and the manipulation
operation are specified by the gesture. For rough placement, x-y translation in Eden is faster
than in Maya. However, TM needs more precision when fine-tuning object positions, and
x-y translation is cumbersome on a small object because the conjoined touch obscures the
position of the object. Also, TM occasionally needs to dolly close to an object in order to
select it, because distant or partially occluded objects have small target areas making them
difficult to select. In working with Eden, TM did discover an unintended but positive side
effect: in certain situations our implementation permits him to switch between operations
without lifting the finger selecting the object. For example, if TM first performs an x-y
translation, he can then fluidly transition to z translation by adding a one-touch with a
second hand, without lifting the conjoined touch used for x-y translation.

Camera control: For TM, the Eden camera controls have slight usability advantages
over Maya. Clutching a mouse is a physical annoyance for TM as he sometimes inadvertently
slides the mouse off the working surface, which is not an issue with direct-touch. However,
TM finds framing on an object difficult with Eden, because it often requires tapping on a
small object, which is imprecise with the conjoined touch.

Adding objects: TM finds that adding objects to a set with Eden is more efficient than
with Maya. Using the throw-and-catch technique, he can tap directly where a new object
should roughly be positioned. The visual icons in the model catalog also help remind him
what each model looks like. Maya does not provide preview icons.

Additional commands: TM considers quasimodes to be effective for accessing addi-
tional commands. Quasimodes permit the reuse of simple gestures, which makes the cor-
responding commands easy to invoke. The icons on the buttons help him remember which
quasimodes are available. TM also finds strokes are as effective as keyboard shortcuts for
executing simple commands such as undo and redo.

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 70

Repetitive stress ingury: Over the years building sets, TM has developed repetitive
stress injury (RSI) and currently wears a wrist protector on the hand he uses to control the
mouse. To prevent his RSI from worsening, he takes regular breaks and finds other ways
to exercise his wrist. TM finds that using two hands with Eden better balances the load
between both hands. However, we do not have enough experience to know if different RSI
problems will arise from multitouch interaction.

TM estimates that he is 20% faster building a set with Eden than with Maya. These
results suggest that we have succeeded in providing an expert set construction artist a fully
functioning multitouch application that is more efficient than Maya, an industry-approved
application that has been refined over many years.

Nevertheless there is still room for improvement in both the interface and hardware of
our system. According to TM, coarse placement is sufficient for the majority of the organic
set construction task. But, if we can address the occlusion problem for x-y translation
and the precision problem for selecting small objects with techniques such as Shift [128] or
FingerGlass [64], then we can provide a better overall experience for TM. Our hardware
also limits the effectiveness of Eden. Our multitouch sensor only runs at 30 Hz and our
touch detection system has a small delay when responding to input, which makes Eden less
responsive than Maya. Also, two nearby, but separate touches sometimes collapse into a
conjoined touch due to noise in the sensor, so the application may at times interpret TM’s
intentions incorrectly.

5.3.3 New User Experience

We designed Eden using the input from one set construction artist. To gain a better un-
derstanding of Eden’s potential, we asked TP, a set construction artist with two years of
experience, to use Eden for three, 45-minute sessions.

In the first session, we introduced Eden to TP, explaining its operations and features.
He spent the second half of the session exploring and familiarizing himself with the interface
by constructing a few small sets. His biggest early frustration was camera control, as the
sensitivity did not match the Maya controls he was used to.

At the start of the second session we asked TP to recall the object manipulation gestures
and the camera control gestures. He was able to perform each one without help, with the
exception of world z rotation and one-dimensional scale. These two operations tend to be
the least frequently used for object manipulation. After spending 20 minutes warming up
and refamiliarizing himself with the interface, he was ready to construct a set. In 15 minutes
he was able to build the set shown in Figure 5.3. At this stage, TP claimed he was “having
fun” and building organic sets with his hands “feels like gardening.” By the end of session
two TP felt he was over the initial hump of learning the gestures.

TP returned for the third session three days after session two. Despite the break, TP was
able to recall all the object manipulation and camera control gestures. He remembered the
quasimode functions as well as the stroke commands for loading models, performing undo,

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 71

and resetting the camera position. After ten minutes of practicing the various gestures, he
spent the remaining time constructing a set.

Overall, TP found that Eden provided a more immersive experience than Maya, because
he felt like he was “sculpting a space” with his hands and could “forget about the technology,”
which made him feel like he was sketching. In addition to enjoying the tactile quality of
interacting with the objects, he found that using both hands to quickly transport objects in
and out of the drawer was effective and efficient. We are encouraged that TP was able to
learn and remember all of the object manipulation and camera control gestures after just
two sessions, suggesting that our gestures are easy to learn and recall. Like TM, TP also
discovered that he could perform fluid transitions between operations without lifting the
selecting finger. He used fluid transitions frequently.

Although TP had a positive experience overall, he found certain operations difficult to
perform with Eden. While he could control the camera, he was uncomfortable with the
gestures. He found that camera roll mapped to two fingers was confusing as he would
inadvertently roll the camera when he wanted to only perform a dolly. Although the dolly
gesture has enough degrees of freedom to also specify roll, in future iterations of Eden we
could separate the two operations or remove roll entirely. Also, his interpretation for the
pinch motion to perform dolly was inverted from its intended use. When he spread two
fingers apart he thought he was pushing the set away, so he expected the camera to dolly
away from the set; instead, the camera dollied towards the set. Future iterations of Eden
may resolve this difference in interpretation by giving TP a method to customize gestures.
For the majority of the organic set construction process, TP did not find precision to be an
issue. However, like TM, when TP wanted to fine-tune the positions of a few objects, he
had to dolly in close, otherwise he found selecting and manipulating small or distant objects
difficult.

As we observed with TM, our hardware has room for improvement. TP felt he had
to apply heavy pressure on the screen when performing gestures, making them slow and
possibly straining on the hand. If we improve the hardware to recognize lighter touches and
be more responsive, then we can provide a more comfortable and seamless experience.

5.4 Lessons Learned

Based on our experiences designing a complete multitouch application and our interviews
with professional set construction artists who used it, we summarize the following lessons:

e Justify simultaneous interactions — Determine how often users will use simultane-
ous interactions, if at all. If the benefits of simultaneous interactions do not outweigh
the complexity of handling simultaneous interactions and the cognitive difficulty for a
user to perform them, then support just one interaction at a time.

e Balance gestures across both hands — Split the touches across both hands in order
to reduce the number of touches per hand and increase mobility. Fewer touches per

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 72

hand makes gestures faster and more comfortable to perform.

e Reuse gestures via modes — Gestures generally become more complicated as the
number of operations increases. Although we sought to reduce modes, quasimodes
allow reuseable gestures, which keep gestures simple.

e Interpret gestures based on location — Reduce conflicts by interpreting gestures
made in one location (e.g., stroke pad) differently than gestures made in other locations.

e Identify low precision tasks — Evaluate the proposed application and consider
whether precision will be a major factor. Techniques that compensate for touch impre-
cision [14] may slow the user’s performance and limit the effectiveness of a multitouch
interface.

e Factor in occlusion — Consider designing gestures that use indirect manipulation, so
the user can perform manipulations away from the object and reduce hand occlusion,
or allowing the user to release static touches once a gesture is recognized [143]. In
addition, consider augmenting the interface to be occlusion-aware [127].

e Throw objects — A mouse cursor cannot be in two places at once, whereas a user’s
hands can. Pass objects between the hands to reduce hand movement times. Consider
integrating a flick gesture to indicate a throw.

e Design fluid transitions between gestures — If two operations are often performed
in sequence, design corresponding gestures that smoothly transition between the two.
For example, a one-touch gesture can transition to a two-touch gesture with the appli-
cation of a second touch.

5.5 Extensions

Eden primarily supports the rough placement of objects for organic set construction. For
general set construction, we need to augment Eden with more precise interaction techniques.
An artist should be able to adjust a single spatial parameter of an object without affecting
the others, so we need additional gestures that control each spatial parameter separately.
We could also incorporate existing techniques such as snap-dragging [16] to help the artist
precisely align and position manmade objects found in general sets. In addition, a better
hardware setup could improve precision by increasing touch resolution and reducing latency.
Aside from object manipulation, we expect Eden’s basic interface for camera control, adding
objects, and setting modes to be sufficient for general set construction.

In addition to general set construction, our design decisions should transfer well to other
single-user multitouch applications. By restricting applications to support only one operation
at a time, developers can design simple, two-handed gestures that are easy to remember and
comfortable to perform. Quasimodes allow the reuse of simple one-handed gestures, and
when applicable, throw-and-catch eliminates the need for dragging.

CHAPTER 5. DESIGNING A PROFESSIONAL MULTITOUCH APPLICATION 73

5.6 Conclusion

We have demonstrated that with careful application and gesture design, multitouch input is
a promising enhancement to the workflow for organic set construction artists. Multitouch
displays for the desktop are becoming more widely available, providing more opportunity
for users in different industries to benefit from professional multitouch applications. Many
of our design guidelines and lessons learned are applicable to the development of new mul-
titouch applications. Good developer tools can also facilitate the creation and adoption of
these applications. Thus, it is important to consider the tools for developing multitouch ap-
plications. In the next chapter, we present a new multitouch framework to help developers
build and manage multitouch gesture sets.

74

Chapter 6

Representing Multitouch Gestures as
Regular Expressions

Designing and implementing Eden gave us significant experience with building a complete
multitouch application. The Eden gesture set consists of variety of gestures that relies
heavily on touch sequencing and hit-targets. We implemented these gestures from scratch
by processing low-level touch events like the touch-down, touch-move, and touch-up events
reported by current multitouch frameworks. These touch events are analogous to the mouse-
down, mouse-move, and mouse-up events generated by mouse-based GUI frameworks. As
with mouse events, multitouch frameworks deliver touch events to widgets or objects in
the scene hit by the respective touches. A multitouch gesture is thus a sequence of these
touch events on scene objects such as touchl-down-on-objectl, touchi-move, touch2-down-
on-object?, etc. Unlike mouse gestures which track the state of a single point of input,
multitouch gestures often track the states of many points of contact in parallel as they each
appear, move, and disappear. When building Eden, we found that writing robust recognition
code with current frameworks for sets of multitouch gestures was challenging for two main
reasons:

1) Multitouch gesture recognition code is split across many locations in the
source. Today, developers must write separate callbacks to handle each low-level touch
event for each scene object. Implementing a gesture requires tracking the sequence of events
that comprise the gesture across disjoint callbacks. Consider a gesture in which the user must
simultaneously touch two scene objects to connect them as nodes in a graph. The developer
must maintain the state of the gesture across callbacks for each object and communicate
this state via messages or global variables. Such stack ripping [3] results in complicated and
hard-to-read “callback soup.” Breaking up gesture code makes it difficult to not only express
a gesture, but also to understand and modify the gesture later.

2) Multiple gestures may be based on the same initiating sequence of events.
Consider two gestures, one for rotating and one for scaling objects in a 2D scene. Both
gestures require the first touch to fall on an object to select it, while the motion of a second
touch indicates the transformation. At the level of touch events, the two sequences are

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 75

Gesture Regular Expression
D M{x(D3 (M| M3)<U3 Mi<[D3 (M M3)*D3 (M| M3 ME)<(USMS | M3)*U3 M| U3 | M3)<U3 M) U

panCamera() zoomCamera()
Gesture Tablature Recognized Pan and Zoom
e0o Proton: Gesture Tablature Editor

GESTURE NAME c c Q
PanAndZoom a 2 a a O

p—ll

(New Track)

N AL panCamera() zoognCame;a() *

(" Delete Track) O

0O * , zoomCamera() ﬁ
' zoomCamera()

{

Figure 6.1: Proton represents a gesture as a regular expression describing a sequence of
touch events. Using Proton’s gesture tablature, developers can design a multitouch gesture
graphically by arranging touch sequences on horizontal tracks. Proton converts the tablature
into a regular expression. When Proton matches the expression with the touch event stream,
it invokes callbacks associated with the expression.

identical and the developer must write disambiguation logic to resolve this conflict within
the respective callbacks. Yet, such gesture conflicts may not even be apparent until a user
performs one of the gestures at runtime and the application responds with an unintended
operation. In large applications that support many gestures, identifying and managing such
gesture conflicts can be extremely difficult.

These two sources of complexity — splitting gesture recognition code across callbacks
and conflicts between similar gestures — make it especially difficult to maintain and extend
multitouch applications.

To help alleviate these issues, we have developed Proton, a multitouch framework that
allows developers to declaratively specify the sequence of touch events that comprise an entire
gesture using a single regular expression. Proton automatically manages the underlying state
of the gesture; the developer writes one callback function that is invoked whenever the stream
of input events matches the gesture’s regular expression. To provide visual feedback over the
course of a gesture, the developer can optionally define additional callbacks that are invoked
whenever the input stream matches expression prefixes. Our approach significantly reduces
splitting of the interaction code as developers do not have to manually manage state or write
a callback for every touch event.

Proton touch events are also customizable. Developers can define custom touch attributes
and incorporate them into declarative gesture definitions. We demonstrate the benefits of
customization with example implementations of five attributes: a direction attribute for

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 76

specifying touch trajectory, a pinch attribute for detecting when touches move towards one
another, a touch area attribute for simulating pressure, a finger orientation attribute that
provides an additional parameter for selecting menu items, and a screen location attribute
for simulating hand ID and user ID.

Declaratively specifying gestures as regular expressions also allows Proton to statically
analyze the gesture expressions to identify the conflicts between them. Instead of having to
extensively test for such conflicts at runtime, our static analyzer tells the developer exactly
which sets of gestures conflict with one another at compile time. The developer can then
choose to write the appropriate disambiguation logic or modify the gestures to avoid conflicts.

Complex regular expressions can be difficult to author, read, and maintain [18]. In regular
expressions that recognize multitouch events, the interleaving of multiple, simultaneous touch
events in a single event stream exacerbates this complexity. To help developers build ges-
ture expressions, Proton offers gesture tablature, a graphical notation for multitouch gestures
(Figure 6.1). The tablature uses horizontal tracks to describe touch sequences of individual
fingers. Using Proton’s tablature editor, developers can author a gesture by spatially arrang-
ing touch tracks and graphically indicating when to execute callbacks. Proton automatically
compiles the gesture tablature into the corresponding regular expression.

We demonstrate the expressivity of Proton with implementations of four proof-of-concept
applications: a shape manipulation application, a sketching application, a unistroke text
entry technique [140], and the game Pong. Using these examples, we show that Proton
significantly reduces splitting of gesture recognition code and that it allows developers to
quickly identify and resolve conflicts between gestures. Proton increases maintainability and
extensibility of multitouch code by simplifying the process for adding new gestures to an
existing application.

Finally, we present a user study that investigates how quickly and accurately developers
recognize and reason about gestures described using gesture regular expressions, gesture
tablatures, and iOS-style procedural event-handling pseudocode.

6.1 A Motivating Example

We begin with a motivating example that demonstrates the complexity of implementing a
custom gesture using Apple’s i0S [6], which is structurally similar to many commercial mul-
titouch frameworks. We later show how writing the same example in Proton is significantly
simpler, making it easier to maintain and extend the interaction code.

As the user interacts with a multitouch surface, iOS continuously generates a stream of
low-level touch events corresponding to touch-down, touch-move and touch-up. To define a
new gesture, the developer must implement one callback for each of these events, touches-
Began(), touchesMoved() and touchesEnded(), and register them with objects in the scene.
For each touch event in the stream, iOS first applies hit-testing to compute the scene object
under the touch point and then invokes that object’s corresponding callback.

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 7

It is the responsibility of the developer to track the state of the gesture across the different
callbacks. Consider a two-touch rotation gesture where both touches must lie on the same
object with the following pseudocode.

iOS: rotation gesture
1: shape.addRecognizer(new Rotation)

2: class Rotation
gestureState < possible [*gesture state™/
touchCount < 0

function touchesBegan()

touchCount < touchCount + 1

if touchCount == 2 then
gestureState < began

else if touchCount > 2 then

10: gestureState < failed

11: function touchesMoved()

12: if touchCount == 2 and gestureState = failed then
13: gestureState < continue

14: /*compute rotation*/

15: function touchesEnded()

16: touchCount < touchCount — 1

17: if touchCount == 0 and gestureState != failed then
18: gestureState < ended

19: /*perform rotation cleanup*/

The gesture recognition code must ensure that the gesture begins with exactly two touches
on the same object (lines 5-10), that rotation occurs when both touches are moving (lines 11-
14) and that the gesture ends when both touches are lifted (lines 15-19). Counting touches
and maintaining gesture state adds significant complexity to the recognition code, even for
simple gestures. This state management complexity can make it especially difficult for new
developers to decipher the recognition code.

Suppose a new developer decides to relax the rotation gesture, so that the second touch
does not have to hit the object. The developer must first deduce that the gesture recognition
code must be re-registered to the canvas containing the object in order to receive all of
the touch events, including those outside the object. Next the developer must modify the
touchesBegan() function to check that the first touch hits the object, and set the gesture
state to failed if it does not. Although neither of these steps is difficult, the developer cannot
make these changes without fully understanding how the different callback functions work
together to recognize a single gesture. As the number of gestures grows, understanding how

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 78

they all work together and managing all the possible gesture states becomes more and more

difficult.

6.2 Using Proton

Like iOS, Proton is an event-based framework. But, instead of writing callbacks for each
low-level touch event, developers work at a higher level and declaratively define gestures as
regular expressions comprised of sequences of touch events.

6.2.1 Representing Touch Events

A touch event contains three key pieces of information: the touch action (down, move, up),
the touch ID (first, second, third, etc.), and a series of touch attribute values. These touch
attribute values describe different characteristics of a touch. For example, one attribute
value can indicate the hit-target of the touch, while a second attribute value can indicate the
direction of the touch. The developer determines the number and types of touch attributes
by creating attribute generators that process the touch event data and returns an attribute
value for each touch event. Proton represents each event as a symbol with three components:

1) E is the touch action, either D, M, or U to represent touch-down, touch-move, or touch-
up respectively. 2) Tjp is the touch ID that groups events belonging to the same touch. 3)
Ay 1 Ag : As..., are the attribute values, where A; is the value corresponding to the first
attribute, As is the value corresponding to the second attribute, and so on.

For example, with a single attribute for hit-target, M7 represents move-with-first-touch-
on-shape-target, where the ‘s’ hit-target attribute value represents a shape object. We can
add a second attribute to indicate the direction of the touch. MW represents move-with-
first-touch-on-shape-target-in-west-direction, where the additional ‘W’ direction attribute
value represents the west direction. As we explain in Section 6.3.1, Proton works with
the multitouch hardware and attribute generators provided by the developer to create a
stream of these touch event symbols.

6.2.2 Gestures as Regular Expressions

The developer can define a gesture as a regular expression over these touch event symbols.
Proton supports the use of the three standard regular expression operators: parentheses to
group symbols, Kleene stars (‘*’) to specify repetitions, and vertical bars (‘|") to specify
disjunctions. Figure 6.2 shows the regular expressions describing three shape manipulation
operations using a hit-target attribute:

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 79
Translation D? M? *U ? Hit-Target Attribute

s =shape
b = background

Rotation D7 Mi*D3 (M| M)+ (U M3xU3 [UsMi=U7) - a=any=(slb)

Scale D My*D3 (M3 M3)+ (U7 Ma#U3 |U3Mi*U3)

A A A
scale() endScale()

Figure 6.2: Regular expressions for translation, rotation and scale gestures. The thumbnails
illustrate the user’s actions corresponding to the colored symbols for the scale gesture.

Translation: First touch down on a shape to select it (red symbol). The touch then
moves repeatedly (green symbol). Finally, the touch lifts up to release the gesture (blue
symbol).

Rotation: First touch down on a shape followed by a second touch down on the shape
or canvas (red symbols). Then both touches move repeatedly (green symbols). Finally, the
touches lift up in either order (blue symbols).

Scale: First touch down on a shape followed by a second touch down on the shape or
canvas (red symbols). Then both touches move repeatedly (green symbols). Finally, the
touches lift up in either order (blue symbols).

Describing a gesture as a regular expression both simplifies and unifies the gesture recog-
nition code. The Proton pseudocode required to implement the general rotation gesture
(with a second touch starting on a shape or background) is:

Proton: rotation gesture

/*indices:1 2 3 4 5 6 7 8 9 10 11*/
L gest: DIM{*D§ (M|Mg)* (Up Mg*US|USM;*Up)
2: gest.addTrigger(rotate(),4)
3: gest.addTrigger(rotate(),5)

/*compute rotation in rotate() callback*/
4: gest.finalTrigger(endRotate())

/*perform rotation cleanup in endRotate() callback®/
5: gestureMatcher.add(gest)

Instead of counting touches and managing gesture state, the entire gesture is defined as a
single regular expression on line 1. Unlike iOS, Proton handles all of the bookkeeping required
to check that the stream of touch events matches the regular expression. The developer
associates callbacks with trigger locations within the expression. The second parameters in

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 80

s:N, ,s:N | ,s:N s:N|S, ,s:N|S_ . s:N|S Sien Sl (Sl
D™ My *Uy Ds l'\A/h |*U1 | D1"My'*U3
translate() translate translate()

0
s:N s:N s:N|S s:N|S S S
(a) transiate() (b) translate() (0 transiate()

Figure 6.3: Combining the hit-target and direction attributes, the developer can specify a
gesture to translate a shape (denoted as ‘s’) with varying degrees of specificity: (a) north
only, (b) north and south only, (¢) in any direction.

lines 2 and 3 create triggers at the 4th and 5th symbols of the expression. The application
invokes the rotate() callback each time the event stream matches the regular expression up
to the trigger location. In this case, the match occurs when the two touches are moving;
the callback can provide on-screen feedback. The location for the final trigger (line 4) is
implicitly set to the end of the gesture expression.

To change a gesture’s touch sequence, the developer simply modifies the regular expres-
sion. For example, to require users to place the second touch on a shape, the developer need
only change the regular expression so that the second touch down must occur on a shape
rather than on a shape or background. In iOS, making this change requires much deeper
understanding of the state management in the gesture recognition code.

6.2.3 Gestures with Multiple Touch Attributes

By implementing several attribute generators, the developer can also create gestures that
combine attributes. For example, the expression DN MFN*USN describes a one-finger
northward motion on the shape object (Figure 6.3a). Often a gesture allows for certain
attributes to take on one of several values. The developer can use the ‘|” character to denote
the logical or of attribute values. For example, the expression DIV MEVISxsiNIS axtends
the previous gesture to allow both north and south motions (Figure 6.3b). Proton expands
the ‘| shorthand into the full regular expression (D§N|D5%)(MEN| M) (UsN|U5). Pro-
ton also allows developers to use the ‘@’ character to denote a wildcard which specifies that
an attribute can take any value, effectively ignoring the attribute during matching. For ex-
ample, if the direction attribute Ay can take the set of values {N, S, E, W}, the expression
D M **U5* describes any one-finger trajectory on the shape object (Figure 6.3¢). In this
expression, the symbol M;*® expands to MV | M| MEF| MW,

6.2.4 Gesture Tablature

When a gesture includes multiple fingers each with its own sequence of touch-down, touch-
move and touch-up events, the developer may have to carefully interleave the parallel events
in the regular expression. To facilitate authoring of such expressions, Proton introduces

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 81

(@) Event Nodes callback ————> rotate() endRotate() ‘
trigger <«——final trigger

O D attribute value(s) —> s

S
touch track > O O
O M= aligned

° * [touchevents
@ o——o
Qv]

touch down touch move touch up

DT Mi»D; (M7 | M) (U3 M= U7 [UT Mz*U3)
rotate() endRotate()
b s b b
v 0—0—0—0, DE’M?*M?M?*ME’*UE’A
deleteShape() deleteShape()
s s s s

°© 0 0O) Di Mi* U7 Di Mi*Uj
A

zoomShape() zoomShape()

s = shape, b = background

Figure 6.4: (a) Tablature for a two-touch rotation gesture. (b) Tablature for a strikethrough
delete gesture. (c¢) Tablature for double tap zoom.

gesture tablature (Figure 6.4). This notation is inspired by musical notations such as guitar
tablature and step sequencer matrices. Proton converts the graphical notation into a regular
expression, properly interleaving parallel touch events. Proton ensures that the resulting
regular expressions are well formed.

Using Proton’s interactive tablature editor, developers can graphically indicate a touch
event sequence using horizontal touch tracks. Within each track, a green node represents
a touch-down event and a red node represents a touch-up event. The attribute values as-
sociated with each touch event are listed above the corresponding nodes. The black line
connecting the nodes represent an arbitrary number of touch-move events and inherit the
attributes of the preceding node. Vertical positions of nodes specify the ordering of events
between touch tracks: event nodes to the left must occur before event nodes to the right,
and when two or more event nodes are vertically aligned the corresponding events can occur
in any order. This separation of concerns facilitates authoring as developers can first design
the event sequence for each finger on a separate track and then consider how the fingers
must interact with one another.

For example, Figure 6.4a shows the tablature for a two-touch rotation gesture with a
hit-target attribute where the first touch must hit some shape, the second touch can hit any-
where, and the touches can be released in any order. Proton converts the vertically aligned
touch-up nodes into a disjunction of the two possible event sequences: (U{M3*Us|Us M*UY).

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 82

Thus, Proton saves the developer the work of writing out all possible touch-up orderings.
In addition, tablature uses the same shorthand (‘|” characters and ‘e’ wildcards) as regular
expressions for specifying multiple attribute values (Figure 6.3). We describe the algorithm
for converting tablatures into regular expressions in Section 6.3.5.

Proton inserts touch-move events between touch-down and touch-up events when con-
verting tablature into regular expressions. To indicate that attributes associated with a touch
can change during a move, the developer can insert explicit touch-move nodes. Consider a
strikethrough gesture to delete shapes that starts with a touch-down on the background,
then moves over a shape, before terminating on the background again. The corresponding
tablature (Figure 6.4b) includes a gray node with hit-target attribute value s indicating that
at least one move event must occur on a shape and a white node with hit-target attribute
value b, indicating that the touch may move onto the background before the final touch-up
on the background. Developers can also express multiple recurring touches (e.g., a double
tap), by arranging multiple touch tracks on a single horizontal line (Figure 6.4c).

Developers can also graphically specify trigger locations and callbacks. A local trigger
arrow placed directly on a touch track associates a callback only with a symbol from that
track (Figure 6.1). A global trigger arrow placed on its own track (e.g., rotate() in Fig-
ure 6.4a) associates the callback with all aligned events (down, move or up). A final trigger
is always invoked when the entire gesture matches (Figure 6.4b,c). To increase expressivity
our tablature notation borrows elements from regular expression notation. The developer
can use parentheses to group touches, Kleene stars to specify repetitions, and vertical bars
to specify disjunctions. Figure 6.1 shows an example where the user can place one touch on
a button and perform repeated actions with one or two additional touches.

6.2.5 Static Analysis of Gesture Conflicts

Gesture conflicts arise when two gestures begin with the same sequence of touch events.
Current multitouch frameworks provide little support for identifying such conflicts and de-
velopers often rely on runtime testing. However, exhaustive runtime testing of all gestures
in all application states can be prohibitively difficult. Adding or modifying a gesture can
lead to new conflicts, which then requires retesting of all gestures for conflicts.

Proton’s static analysis tool identifies conflicts between gesture expressions at compile
time. Given the regular expressions of any two gestures, this tool returns the extent to which
the gestures conflict, in the form of a longest prefix expression that matches both gestures.
For example, when comparing the translation and rotation gestures (Figure 6.2), it returns
the expression DjM:* indicating that both gestures will match the input stream whenever
the first touch lands on a shape and moves. When the second touch appears, the conflict is
resolved as translation is no longer possible.

Once the conflict has been identified the developer can either modify one of the gestures
to eliminate the conflict or write disambiguation code that assigns a confidence score to each
interpretation of the gesture as we describe in Section 6.3.3.

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR

EXPRESSIONS 83
touch event matched
raw input ™ Giraam stream [Gesture | 9°StUres [Gesture execute
Generator Matcher Picker gesture
| o | | | | | callback
Attribute Gestures Confidence
Generators Calculators

Figure 6.5: The Proton architecture. The responsibilities of the application developer are
shown in blue.

6.3 Implementation

The Proton runtime system includes three main components (Figure 6.5). The stream gen-
erator converts raw input data from the hardware into a stream of touch events. The gesture
matcher compares this stream to the set of gesture expressions defined by the developer and
emits a set of candidate gestures that match the stream. The gesture picker then chooses
amongst the matching gestures and executes any corresponding callback. Proton optionally
splits the touch stream to support recognition of multiple simultaneous gestures. Proton
also includes two compile-time tools. The tablature conversion algorithm generates regular
expressions from tablatures and the static analysis tool identifies gesture conflicts.

6.3.1 Stream Generator

Multitouch hardware provides a sequence of time-stamped touch points. Proton converts
this sequence into a stream of touch event symbols (Figure 6.6 Top). It groups touches
based on proximity in space and time, and assigns the same T;p for touch events that likely
describe the path of a single finger. The stream generator increases the T;p by one for
each new touch down. Proton also appends a series of touch attribute values for each touch
event. It is the responsibility of the developer to provide attribute generators that process
touch events and return attribute values. For example, the developer can implement an
attribute generator that performs hit-testing and returns the hit-target of the touch event.
We describe attribute generation in more detail in Section 6.4.

When the user lifts up all touches, the stream generator flushes the stream to restart
matching for subsequent gestures. Some gestures may require all touches to temporarily lift
up (e.g., double tap, Figure 6.4c). To enable such gestures, developers can specify a timeout
parameter to delay the flush and wait for subsequent input. To minimize latency, Proton
only uses timeouts if at least one gesture prefix is matching the current input stream at the
time of the touch release.

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 84

(@) (b) (@ ﬁ

SAASAASAASAAS s

Touch Event Stream Dg M3M3M3M3M53.. M3 U;
\391 ¢3e1 31

Touch ID Renumbering D? M?M?M?M?M?...M?U?

Interaction Gesture

Translation D? M ?* U ?

S a
Rotation D';' M ?* g 71V
S S a S a
Scale D M7* B MaiMo{U7M U510 M=0T)-

=l —=ln
Ny No
Ny N
Ny N
=l —ln
=l =ln

Figure 6.6: Top: Proton generates a touch event stream from a raw sequence of touch points
given by the hardware. (a) The user touches a shape, (b) moves the touch and (c) lifts
the touch. The gesture matcher renumbers unique 77ps produced by the stream generator
to match the gesture expressions. Bottom: The gesture matcher then sequentially matches
each symbol in the stream to the set of gesture expressions. Translation, rotation, and scale
all match when only a single finger is active, (a) and (b), but once the touch is lifted only
translation continues to match, (c).

6.3.2 Gesture Matcher

The gesture matcher keeps track of the set of gestures that can match the input stream.
Initially, when no touches are present, it considers all gestures to be possible. As it receives
new input events, the matcher compares the current stream against the regular expression of
each candidate gesture. When a gesture no longer matches the current stream the matcher
removes it from the candidate set. At each iteration the matcher sends the candidate set to
the gesture picker.

In a gesture regular expression, T7p denotes the touch by the order in which it appears
relative to the other touches in the gesture (i.e., first, second, third, ... touch within the
gesture). In contrast, the T;ps in the input event stream are globally unique. To properly
match the input stream with gesture expressions, the matcher first renumbers T7ps in the
input stream, starting from one (Figure 6.6 Top). However, simple renumbering cannot
handle touch sequences within a Kleene star group, e.g., (D$M{*U{)*, because such groups
use the same T7p for multiple touches. Instead we create a priority queue of T7ps and assign
them in ascending order to touch-down symbols in the input stream. Subsequent touch-

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR

EXPRESSIONS 85
Translation Rotation
DIMU] D M3*D3 (MM (U IMZU3|U3 M3=U7)

Figure 6.7: Proton converts the developer-defined regular expressions to finite-state machines
for gesture matching.

move and touch-up symbols receive the same T7p as their associated touch-down. Whenever
we encounter a touch-up, we return its T7p to the priority queue so it can be reused by
subsequent touch-downs.

The gesture matcher precomputes the finite-state machine (FSM) for each gesture ex-
pression (Figure 6.7). Before the first touch event, all gestures are candidates for matching
and their respective FSMs begin in the start state. For each touch event, the gesture matcher
traverses the FSMs of all candidate gestures. At any iteration, if traversal leads to a fail state
in an FSM, the respective gesture is removed from the candidate set (Figure 6.6 Bottom). If
traversal reaches an accept state, the gesture fully matches the input stream and the gesture
callback is forwarded to the gesture picker where it is considered for execution. If traversal
reaches a state with trigger callback, the gesture matcher fowards the trigger callback to
the gesture picker. Finally, whenever the stream generator flushes the event stream, Proton
reinitializes the set of possible gestures and matching begins anew.

6.3.3 Gesture Picker

The gesture picker receives a set of candidate gestures and any associated callbacks. In
applications with many gestures it is common for multiple gesture prefixes to match the
event stream, forming a large candidate set. In such cases, additional information, beyond
the sequence of touch events, is required to decide which gesture the user intended to perform.

The developer can provide the additional information by writing a confidence calculator
function for each gesture that computes a likelihood score between 0.0 and 1.0. In computing
this score, confidence calculators can consider additional touch features not described in the
matching sequence of touch event symbols. For example, a confidence calculator may analyze
the timing between touch events or the trajectory of touch positions across move events.
Consider the conflicting rotation and scale gestures shown in Figure 6.2. The confidence

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 86

calculator for scale might check if the touches are moving away from one another while
the confidence calculator for rotation might check if one finger is circling the other. The
calculator can prevent the execution of a callback by returning a score of zero.

The gesture picker executes confidence calculators for all of the gestures in the candidate
set and then invokes the associated callback for the gesture with the highest confidence score.
In our current implementation it is the responsibility of the developer to ensure that exactly
one confidence score is highest. We leave it to future work to build more sophisticated logic
into the gesture picker for disambiguating amongst conflicting gestures. Schwarz et al.’s [118]
probabilistic disambiguation technique may be one fruitful direction to explore.

One common use of trigger callbacks is to provide visual feedback over the course of a
gesture. However, as confidence calculators receive more information over time, the gesture
with the highest confidence may change. To prevent errors due to premature commitment
to the wrong gesture, developers should ensure that any effects of trigger callbacks on ap-
plication state are reversible. Developers may choose to write trigger callbacks so that they
do not affect global application state or they may create an undo function for each trigger
callback to restore the state. Alternatively, Proton supports a parallel worlds approach. The
developer provides a copy of all relevant state variables in the application. Proton executes
each valid callback regardless of confidence score in a parallel version of the application but
only displays the feedback corresponding to the gesture with the highest confidence score.
When the input stream flushes, Proton commits the the application state corresponding to
the gesture with the highest confidence score.

6.3.4 Splitting the Touch Event Stream

Proton recognizes a gesture when the entire touch event stream matches a gesture regular
expression. Each time a match is found, Proton executes the callback associated with the
gesture expression and flushes the stream. With a single stream, Proton can recognize at
most one gesture at a time.

To enable the recognition of simultaneous gestures, the developer can set Proton to split
the touch event stream by any custom attribute. The developer registers a split-stream
attribute generator with the stream generator, and the stream generator splits the touch
event stream by attribute value into substreams. Thus, each substream only contains events
with the same split-stream attribute value. Proton then runs a separate gesture matcher on
each substream, which allows Proton to recognize multiple simultaneous gestures, as each
matcher can detect a gesture. Note that once a touch is assigned to a gesture matcher on
a touch-down event, all successive touch events with the same T7p will be sent to the same
gesture matcher, ensuring that touch events from the same finger do not get split amongst
different gesture matchers. In Section 6.6 we discuss the challenges of detecting multiple
simultaneous gestures without stream splitting. In Section 6.7.4 we demonstrate stream
splitting with a user ID attribute to enable a multiplayer Pong game.

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR

EXPRESSIONS 87
(a) (b) | (0) i
a a ® 3
b b b! b

a a a
(2°r%) (2 1.2
(D?M1*Dg (M3 M)+...
U2 Mox 1 U5 (USME U3 U2 MBxUD) DPMPD3 (MY M)x...)

I I I I
I I I I
I I
1 1} 1 I
I] 1 |
| |
I I I I
I I
| 1 | I
| 1 | I
I I
| | | |
I I I I
| | | |
| | | |
I I I I
| | | |
I I I I
I I I I
| | | |
I I I I
I I
|
I I

DY IVI1*'D2 IVI1IIVI2

Figure 6.8: Our tablature conversion algorithm sweeps left-to-right and emits symbols each
time it encounters a touch-down or touch-up node (vertical dotted lines). We distinguish
three cases: (a) non-aligned nodes; (b) aligned touch-up nodes; (c) aligned touch-down nodes.

6.3.5 Tablature to Expression Conversion

To convert a gesture tablature into a regular expression, we process the tablature from left
to right. As we encounter a touch-down node, we assign the next available T7p from the
priority queue (Section 6.3.2) to the entire touch track. To emit symbols we sweep from
left to right and distinguish three cases. When none of the nodes are vertically aligned we
output the corresponding touch symbol for each node followed by a repeating disjunction of
move events for all active touch tracks (Figure 6.8a). When touch-up nodes are vertically
aligned we emit a disjunction of the possible touch-up orderings with interleaved move events
(Figure 6.8b). When touch-down nodes are vertically aligned we first compute the remainder
of the expressions for the aligned touch tracks. We then emit a disjunction of all permutations
of Trp assignments to these aligned tracks (Figure 6.8c). We output the regular expression
symbols (,), |, or x as we encounter them in the tablature. If we encounter a local trigger,
an arrow placed directly on a touch track, we associate it with only the symbols emitted for
its track. If we encounter a global trigger, an arrow placed on its own track, we associate it
with all symbols emitted at that step of the sweep.

6.3.6 Static Analysis Algorithm

Two gestures conflict when a string of touch event symbols matches a prefix of both gesture
expressions. We call such a string a common prefiz. We define the regular expression that
describes all such common prefixes as the longest common prefix expression. Our static
analyzer computes the longest common prefix expression for any pair of gesture expressions.

To compute the longest common prefix expression we first compute the intersection of
two regular expressions. This intersection is a third expression that matches all strings
that are matched by both original expressions. A common way to compute the intersection
is to first convert each regular expression into a non-deterministic finite automata (NFA)
using Thompson’s Algorithm [126] and then compute the intersection of the two NFAs.

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 88

Intersecting two NFAs
b

A
OO O :
abb*c n) 9 _’

2 ¥\ d
O=(2—0

Converting NFA to Longest Common Prefix Expression

—@ > alabb*

b
a b A longest common
_’ 9 abb* prefix expression
Figure 6.9: Top: The intersection of NFAs for the expressions abbxc and abxd does not exist
because the start state 11 cannot reach the end state 43. Bottom: Treating states 22 and

32 each as end states, converting the NFAs to regular expressions yields a and abbx. The
longest common prefix expression is the union of the two regular expressions.

ab*d

To construct the longest common prefix expression we mark all reachable states in the
intersection NFA as accept states and then convert this NFA back into a regular expression.

We compute the intersection of two NFAs [123] as follows. Given an NFA M with states
my to my and an NFA N with states n; to n;, we construct the NFA P with the cross product
of states m;n; for i = [1,k] and j = [1,{]. We add an edge between m;n; and myn; with
transition symbol r if there exists an edge between m; and m; in M and an edge between
n; and ny in N, both with the transition symbol 7. Since we only care about states in P
that are reachable from its start state min;, we only add edges to states reachable from the
start state. Unreachable states are discarded. Suppose that mj and n; were the original
end states in M and N respectively, but that it is impossible to reach the cross product
end state mgn;. In this case the intersection does not exist (Figure 6.9 Top). Nevertheless
we can compute the longest common prefix expression. We sequentially treat each state
reachable from P’s start state min; as the end state, convert the NFA back into a regular
expression, and take the disjunction of all resulting expressions (Figure 6.9 Bottom). The
NFA to regular expression conversion is detailed in Sipser [123].

6.4 Custom Attributes

To add a new custom attribute in Proton, the developer must write and register an attribute
generator. On each touch event, the attribute generator receives the touch data reported
by the hardware sensors, along with the entire sequence of previous touch symbols from
the stream generator. It then computes an attribute value based on this information and

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR

EXPRESSIONS &9
(a) (b) (¢ O
NE
. / P1 >
0 Po >
E E
S

Figure 6.10: (a) The space of directions is divided into eight ranges representing the four
cardinal and four ordinal directions. (b) The vector formed by the last two positions is
binned to the closest direction. (¢) An L-shaped gesture generates south (‘S’) symbols then
east (‘E’) symbols.

appends it to the current touch event symbol. Since Proton is based on regular expressions
composed of discrete touch symbols, the primary constraint on the attributes is that they
must take discrete values. Thus, attribute generators are often responsible for quantizing
continuous-valued parameters to convert them into attribute values suitable for Proton.
We have implemented five example attribute generators that produce such discrete at-
tributes and demonstrate the flexibility of our approach: 1) a direction attribute for de-
scribing touch trajectory, 2) a pinch attribute for detecting when touches move towards one
another, 3) a touch area attribute for simulating pressure, 4) a finger orientation attribute
for selecting menu items, and 5) a screen location attribute for simulating hand ID and user
ID. The direction and screen location attributes are based on touch position and can work
with any multitouch device. Our implementations of the touch area and finger orientation
attributes require additional touch information which we obtain from a Fingerworks iGesture

Pad [133).

6.4.1 Direction Attribute

The direction attribute allows developers to describe a touch trajectory within a Proton
gesture expression. Since attribute values must be discrete, we bin the space of all directions
into eight ranges representing the four cardinal and four ordinal directions seen in a compass
(Figure 6.10a). To generate this attribute we compute the vector p; —py, between the previous
touch position py (as given by the previous touch event with the same touch ID) and the
current touch position p;. Our direction attribute generator then returns the direction bin
containing the vector (Figure 6.10b). If the touch has not moved beyond a distance threshold,
the generator outputs an ‘O’ value. Our implementation uses a threshold of five pixels.
Trajectory. A sequence of direction attribute values describes a gesture trajectory. For
example, in an L-shaped gesture (Figure 6.10c), such as the one used in Eden to load models,
the touch first moves in the S direction and then in the E direction. The expression to detect
this trajectory is thus: DY MY MP* MEME*UE. In practice we have found that users often

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 90

e, &k

D1 M1 O(M1 |N|b E|W leSlM Ug:-Nﬁ:-*U?:-

scaleX() scaleY()

Figure 6.11: Proton continuously tracks the trajectory of the second touch, allowing the
developer to provide continuous feedback depending on if the touch moves east-west (scale
in x-axis) or north-south (scale in y-axis).

slow down at the beginning of the trajectory or when making the turn from S to E, and
the gesture expression fails if the user hesitates in this manner. To allow the user to hold a
touch position at any point along the trajectory, we modify the expression to include symbols
with direction attribute value ‘O’: D?M?*Mlleo‘S*MlEMlow*UlO'E. Note that this gesture
expression requires the user to execute a perfect right-angle turn. We describe how we can
use timing to extend such trajectory-based gestures to allow imprecise turns in Section 6.5.

Unlike many recognition systems that detect trajectory at the end of the gesture [116,
139], Proton continuously tracks the trajectory as the user performs the gesture. Thus,
developers can provide continuous feedback. For example, a shape manipulation application
might include a gesture where one touch selects the shape, and a second touch must move
E-W to scale the shape along the x-axis or move N-S to scale the shape along the y-axis
with continuous feedback (Figure 6.11). Providing such immediate feedback is an essential
feature for direct manipulation interfaces [122].

6.4.2 Pinch Attribute

A pinch in which two or more touches move towards each other is a commonly used gesture
in multitouch applications. While the previous direction attribute evaluated the movement
of an individual touch, the pinch gesture is based on the relative movements of multiple
touches. Our pinch attribute generator computes the average distance between each touch
and the centroid of all the touches. It compares this average distance to the average distance
computed for the previous touch event and if it decreases the generator assigns the touch
the attribute value ‘P’ for pinching. If the average distance increases it assigns the touch the
value ‘S’ for spreading, and if there is no change in average distance it assigns the value ‘N’
(Figure 6.12a). We use the pinch attribute to describe a two-touch zoom gesture as shown in
Figure 6.12b. Our approach considers all touches together as a whole and cannot distinguish
when only a subset of touches are pinching. For example, if two touches are locally pinching,
but moving away from a stationary third touch, this attribute may report the touches as

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 91

(a)zpzsuN(b) Np aNC AN a AP aPTaaSTA ST ANIA AN N N
L0 0 O f\he DMaD2 (VIR IV IV IMTIMG)+ UsMy Uy
P/ 4 N/ zoomOut() zoomin()
e @ @
Figure 6.12: (a) Touches are assigned a ‘P’ when on average the touches move towards the
centroid, an ‘S’ when the touches move away from the centroid, and an ‘N’ when they stay
stationary. (b) A two-touch gesture that zooms out on a pinch and zooms in on a spread.

(a)

csmy ,Csm_o o Csmo (b)

Dy My Uy

translateCard()

csmll csmll clg, ,cl
Y e
translateStack()
c:smll c:smll

asm asm

asmllg clg asmllg ¢
translateCard() llg cl |lg c:smllg

translateStack()

Figure 6.13: (a) A touch with small (‘sm’) area translates only the topmost card of a stack.
(b) A touch with large (‘lg’) area translates the entire stack.

spreading. An alternative approach is to generate an attribute that encodes the pairwise
pinch relationships of all possible touches, so the developer can then specify which pairs of
touches must be involved in the pinch.

6.4.3 Touch Area Attribute

Many multitouch devices such as the Fingerworks iGesture Pad [133] report the touch area,
the contact area between a finger or hand and the device, as a continuous value. Our
attribute generator quantizes the size of the touch area to two discrete values, small and
large. Precisely regulating touch area can be difficult. In practice we found that consistently
generating more than two distinct levels of touch area was challenging and therefore limited
this attribute to two levels.

Sitmulating Pressure. Although the iGesture Pad cannot detect pressure, we can use
touch area to simulate force, using the approach of ShapeTouch [23]: smaller touch area
corresponds to lower pressure and larger area corresponds to stronger pressure. As shown in
Figure 6.13a, a touch on a card (‘c’) with a small (‘sm’) area M{*™ translates the topmost
card of a stack, while in Figure 6.13b, a touch on a card with a large (‘lg’) area M
translates the entire stack of cards. One limitation of touch area is that a user’s initial touch
area starts small before it grows into a large area. Thus, when using the large touch attribute
value, the developer should allow the touch to begin and end on a small area. In general, the
developer must carefully consider attributes such as area, where a touch must go through
lower attribute values to reach higher attribute values.

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR

EXPRESSIONS 92
(a) . . .
75-105° D?.UM?.U*U?.UA
setWhite()
dU dR I 4. d:U
105180/ 1 01| | O—O,
setWhite()

Figure 6.14: (a) The angle of the major axis of a touch is binned into three orientation values.
(b) The dial menu (‘d’) uses orientation to choose the background color of an application.

6.4.4 Finger Orientation Attribute

The Fingerworks iGesture Pad provides a continuous orientation value for each touch in the
range 0-180°. We bin the orientations to three levels as shown in Figure 6.14a: up (75-105°),
left (>105°), and right (<75°). We define a narrow range for the up bin so users do not
have to awkwardly rotate their wrist or fingers from their natural positions to reach the left
and right bins. We also minimize the number of orientation levels so that users can easily
perform them.

Selecting Menu Items. We use the finger orientation attribute to select from a three-
state dial menu (Figure 6.14b). In this example, the dial sets the background screen color:
an up orientation assigns a white background, a left orientation assigns a green background,
and a right orientation assigns an orange background. This dial menu is very similar to a
marking menu [76], but uses finger orientation instead of stroke direction.

6.4.5 Screen Location Attribute

All multitouch devices provide touch position as a continuous value with each touch event.
The screen location attribute assigns discrete attribute values to touch positions. Hit-testing
is one approach for assigning such discrete values; the attribute value is set to the label of
the hit-target, the object directly under the touch point. In addition to using scene objects
for hit-testing, we can also define other screen regions to generate attribute values.

Hand Identification. Most multitouch devices cannot detect which hand (left or
right) generated a touch event. However, we can simulate hand ID using the screen location
attribute as a proxy for hand ID. We divide the screen in half and assign the attribute value
‘L’ (for left hand) to touches originating from the left side of the screen. Similarly we assign
the value ‘R’ (for right hand) to touches originating from the right side.

We can combine this simulated hand ID attribute with the direction attribute (Fig-
ure 6.15) to create an ordered two-handed marking menu (Chapter 4), in which users must
start a stroke with the left hand and then start a second stroke with the right hand to select
between a large number of menu items. For example, the expression and tablature for the
left hand drawing a stroke in the E direction and the right hand drawing a stroke in the W
direction are given in Figure 6.15.

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 93

Lo LE LOE L%E
LE | Rw O—0——=0

—rv:n ﬂm RO RW RO|W RO|W
A

|) (| executeMenuCommand()

D7 My *D (M| M5).
L:E L:Ej, ,R:O R:W | JR:W/ AL:Of 5 2R:W L:E
(O (o P R |M2 (M7 M2)M77)...
L:OlE R:O|W L:OlE, ,R:O|W , R:O|W], ,R:O|W, ,L:O|E , L:O|E
(W ||’V|2 |)+(Us le l*Uz | |U2 lNh |*U1 l)A
executeMenuCommandy()

Figure 6.15: To simulate hand identification, touches beginning on the left side belong to
the left hand and touches beginning on the right side belong to the right hand. An ordered
two-handed marking menu can be described by adding the direction attribute.

6.4.6 Designing Custom Attributes

We have implemented example applications for the direction, pinch, touch area, finger orien-
tation, and screen location attributes. Based on our experience building these applications,
we distill several design considerations for creating custom attributes.

Levels and Ranges of Attribute Values. Developers should base the number of
levels of an attribute on the specificity needed by the application. More levels provide
developers with finer-grain control over gesture specifications. However, more levels also
require extra effort to author: developers may have to carefully write complex disjunctions
of attribute values in the expressions.

The range of input values binned to each attribute value affects users’ ability to perform
actions that correspond to each attribute value. For example, if the range of a direction value
is small, users may find it difficult to accurately draw a stroke in that particular direction.
Noise or variation in user performance may cause matching to fail for attribute values with
narrow ranges. Developers should choose ranges such that users can reliably perform actions
for each attribute value.

Attribute Value Traversal. Certain attributes such as touch area will require traver-
sal through lower attribute values to reach higher attribute values. Developers should be
cognizant of this possibility and design gestures that allow for such traversal. Additional
developer tools could aid in integrating these attributes in gestures.

No Asynchronous Attribute Values. Developers must assign an attribute value to
each touch event as soon as it is emitted, within the time interval defined by the stream
generator’s reporting rate. While the history of a touch is available, developers must not

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR

EXPRESSIONS 94
(@) Timing Shorthand (b) Novice Marking Menu
. 5 o e e e e Ofp nO\9, 20, ,O o+ N|NE|E|SE|S|SW|W|NWy ¢, »
® =(M1)" = iV MMy Dy (M) My Mk M INEIEISESISWIV MixUq
showMenu() executeCommand()
@=(M{)1'3=(M{|M{ M{|M{M{ M) O QO NINEJE[SE[S|SW|WINW -
900, O
showMenu() executeCommand()

Figure 6.16: (a) Shorthand for specifying timing in tablature. (b) Novice marking menu using
timing notation to specify a touch hold.

wait for future information to determine an attribute value. Relying too much on touch
history reduces the immediacy in which Proton can distinguish gestures from each other and
detect conflicts.

Application Independent Attributes. To create attributes that can be reused across
multiple applications, attribute generators should only rely on information contained in the
touch stream received from a hardware device and should not access application-specific
information. For example, once defined, the direction attribute can be used in any application
with gestures that require directional specification.

6.5 Timing

While taps, holds and flicks are common multitouch gestures, the basic touch event sequence
for all three is exactly the same. To distinguish among these three gestures, the gesture
recognizer must have access to timing information. We introduce timing to Proton by adding
the constraint that the stream generator reports touch events at a fixed time interval; we
use 31—03. Thus each touch symbol M7 also represents a unit of time ¢ and a sequence of
k such symbols represents a time duration of kt. To express gesture timing, the developer
can replace M?*, which matches a touch movement of any duration, with a fixed-length
sequence of M7 symbols. This sequence matches only when the touch movement lasts for
the corresponding length of time.

Writing out a fixed-length sequence of move symbols can be tedious, so we introduce a

shorthand for specifying the number of successive touch-move events using the notation

(Mi:llll:)AQ:A?,...)tl—tQ

which generates the expression that matches t; to t5 successive M?;D:AZZAS'“ events. The to

parameter is optional. Proton expands the shorthand into ¢; consecutive move symbols if t,
is not specified. It generates the disjunction of ¢; consecutive move symbols to t, move sym-
bols if t, is specified. For example, a touch and hold that lasts at least five consecutive move
events is expressed as D}(My)° M*Ur, which expands to Dy MMy My My My M*Us. A tap

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 95

of one to five move events is expressed as D} (M?)'~>U?, which expands to D}(Mp| M M?|...
MMM M?M?)U?. We also update the tablature with timing notation as shown in Fig-
ure 6.16a. The developer can specify a range t; to to within the gray move nodes.

Using timing to detect a hold, we can design a marking menu [78] for novice users that
visually displays the menu items if the user holds down a touch for % of a second. We use the
direction attribute described in Section 6.4.1 and a sequence of 10 touch-move symbols to
specify the %s duration of the hold with the expression shown in Figure 6.16b. We associate
a menu drawing callback with the tenth M.

Our previous L-shaped trajectory example requires the user to make a perfect right-
angle turn from the S direction to the E direction (Section 6.4.1). We can use timing to
allow the user to momentarily move in any direction during the turn using the expression
DloMlo*Mlleols*(Mf)1*5M1EM10|E*U10|E. The timing is specified in the symbol, (M)~
which gives the user up to a %s window to make a less precise turn.

To capture timing between taps, Proton utilizes a user-definable timeout. The timing
mechanism could be extended to capture timing between taps, by emitting a new event
symbol that represents zero touches at the system framerate. Similar to specifying the
duration of touch-move events, the developer could use this new symbol to specify the
duration between taps.

6.6 Touch Group Permutations

To handle multiple simultaneous gestures without stream splitting via an attribute gener-
ator, the gesture matcher would need to consider how to assign each distinct touch to a
gesture. This space of possible assignments grows exponentially by the number of touches
and gestures. The developer then must decide which assignment best interprets the intention
of the users.

The number of possible touch groups depends on the number of ways the set of touches
can be partitioned. An integer partition is a way to break up an integer into the sums of
positive integers. A single user can apply up to ten touches to a multitouch device, so for
the integers 1 through 10, the number of integer partitions are 1, 2, 3, 5, 7, 11, 15, 22, 30,
and 42 respectively. For example, the number 4 has five integer partitions: (1,1,1,1), (1,1,2),
(1,3), (2,2), and (4).

With respect to touches, the partition (1,1,2) corresponds to dividing four touches into
three groups: two groups of one touches and one group of two touches. However, each touch
is distinct, so there is more than one way to construct these three groups. There are six in
fact. Take the four touches ¢y, to, t3, and t4. They can be grouped into the partition (1,1,2)
in the following ways:

(t1,ta, tsta), (t1, s, tata), (t1, ta, tats), (ta, s, tita), (ta, ta, tits), (3, ta, tata)

The equation for computing the number of permutations per partition is:

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 96

n!
(x1!xg!) (yn!.yal)

where n is the number of touches, z; is the size of each of the g groups in a partition, and
y; is the count of each of the d distinct group sizes.

For the previous example, there are four touches so n = 4. The partition has three groups
1,1, and 2, so z; = 1, x5 = 1, and z3 = 2. Finally there are two groups of size 1 and one
group of size 2. Thus, y; = 2 and y, = 1 respectively.

n! 4!

(1) (il yg)) — (1LI20)(2111) 0

These touch group permutations do not take into account the gesture set. It is likely that
a touch grouping within permutations can match multiple gestures. For example a grouping
of two touches is a possible match for both the two-touch rotation and scale example gestures.
Thus, a permutation also must consider which gesture to match for each group of touches.
However, if none of the gestures uses n touches, then permutations that contain a group of
n touches is not a possible grouping.

6.7 Applications

To demonstrate the expressivity of our framework, we implemented four proof-of-concept
applications, each with a variety of gestures. They all use the hit-target attribute.

6.7.1 Application 1: Shape Manipulation

Our first application is inspired by Eden (Chapter 5). It allows users to manipulate and lay
out shapes in 2D (Figure 6.17). The user can translate, rotate, scale and reflect the shapes.
To control the canvas, the user holds a quasimode [112] button and applies two additional
touches to adjust pan and zoom. To add a shape, the user touches and holds a shape icon in
a shape catalog and indicates its destination with a second touch on the canvas. To delete a
shape, the user holds a quasimode button and selects a shape with a second touch. To undo
and redo actions, the user draws strokes in a command area below the shape catalog.

Succinct Gesture Definitions

We created eight gesture tablatures, leaving Proton to generate the expressions and handle
the recognition and management of the gesture set. We then implemented the appropriate
gesture callbacks and confidence calculators. We did not need to count touches or track
gesture state across event handlers.

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR

EXPRESSIONS

Translate Shape Single-Stroke Command
S S C C
@ © (]
translateShape() strokeCommand()
Dj Mi*U3 D My* U5,
translateShape() strokeCommand()
Rotate Shape Add Shape
S S e e
o—0 e—0
a a a a
o—© (O—@)
rotateShape() addShape()
D7 My*D3 (17| 3)* .. | DY Mi*(D3 (M| M3)*U3 Mi¥)*U7
s rotz;teSh:pe(a) a addShape()
(U3 M= U7 [UT M3xU3)
Delete Shape
Scale Shape d d
é é O——0
S S
& & (O—@)
') deleteShape()

scaleShape()
SanS. A (S| nnd
Dy Mi%D; (M] | ,le)*
scaleShape()
(U3 Mi= U7 [UF M3+ U3)

DY Mi(D3 (M| M3)+U3 M= U§
deleteShape()

97

s = shape, b = background, a = (s|b),
¢ =command area, d = delete button,
e = shape in shape catalog,

v = canvas control button

Reflect Shape

i}
reflectShape()

D; Mi*D5 (M3 | M3)* D3 (M3 | M3 | M3)* ...

(U3 [M3)US M= |US (M3 | M)« U3 Mi U3,
reflectShape()

Canvas Control

canvasControl()
VoAV Ay aVpad a Vipad|pgad
DY My+(D3 (M| M3)« D3 (M3 | M3 | M3) -
canvasControl()

(UZMY] M3)=U3 MY U3 (VY| M3)=U3 MY) = U}

Figure 6.17: The shape manipulation application includes gestures for 2D layout, canvas
control, and shape addition and deletion through quasimodes.

Many of our tablatures specify different hit-targets for different touches in a gesture. For
example, the Delete gesture requires the first touch to land on the delete button and the
second touch to land on a shape. Proton enables such quasimodes without burdening the
developer with maintaining application state. A hit-target attribute value does not have to
correspond to single target objects: the Rotate, Scale, and Reflect gestures allow the second
touch to land on any object including the background. We also specified the order in which
touches should lift up at the end of a gesture. While the Rotate and Scale gestures permit the
user to release touches in any order, modal commands require that the first, mode-initiating
touch lift up last. Finally, we specified repetitions within a gesture using Kleene stars. For

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR

EXPRESSIONS 98
ano SketchBook Swi pe
C C
0 C C

—90
O_O.
undo()
D7 Mi* D3 (M7 M3)* D3 (M| M3 | M3)* ...
(US (M5 M3*US ME=US | US (M5 | MD#US ME=US ...
US (M5 M5)*US MgxUS | US(MS | M#US MU ...
UF (M5 MS)=US M3<US | US (M | MS)sUT ME=US)

(a) (b) undo()

Figure 6.18: (a) In the sketching application’s palette, the user adjusts brush parameters
through predefined widgets. (b) Aligned touch-up nodes for the swipe tablature generate all
six touch-up sequences.

example, the second touch in the Delete gesture is grouped with a Kleene star, which allows
the expression to match any number of taps made by the second touch.

Static Analysis of Gesture Conflicts

Proton’s static analyzer reported that all six pairs of the shape manipulation gestures (Trans-
late, Rotate, Scale, and Reflect) conflicted with one another. Five of the conflicts involved
prefix expressions only, while the sixth conflict, between Rotate and Scale, showed that those
two gestures are identical. We wrote confidence calculators to resolve all six conflicts.

The static analyzer also found that all shape manipulation gestures conflict with Translate
when only one touch is down. We implemented a threshold confidence calculator that returns
a zero confidence score for Translate if the first touch has not moved beyond some distance.
Similarly, Rotate and Scale only return a non-zero confidence score once the second touch
has moved beyond some distance threshold. After crossing the threshold, the confidence
score is based on the touch trajectory.

6.7.2 Application 2: Sketching

Our second application replicates a subset of the gestures used in Autodesk’s SketchBook 8]
application for the iPad. The user can draw using one touch, manipulate the canvas with
two touches, and control additional commands with three touches. A three-touch tap loads
a palette (Figure 6.18a) for changing brush attributes and a three-touch swipe executes undo
and redo commands, depending on the direction.

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 99

EdgeWrite Gesture for ‘b’ /
nw C swW C se C SW o sw \

keyB()

D1 Nh M1 Nh Nh Nh Nh Nh Nh M1 U1
keyB() sw\ /se

Figure 6.19: EdgeWrite gestures change hit-targets multiple times within a touch track. The
gesture for the letter ‘b’ is shown.

In this application, the generated expressions for Load Palette and Swipe are particularly
long because these three-touch gestures allow touches to release in any order. We created tab-
latures for these gestures by vertically aligning the touch-up nodes and Proton automatically
generates expressions containing all possible sequences of touch-up events (Figure 6.18b).

Proton includes a library of predefined widgets such as sliders and buttons, in which
the expressions have already been defined, and the developer need only associate the target
widget with the gesture expression. We used this library to create the brush attribute palette.
For example, to add color buttons into the palette, we created new instances of the button
press widget, which consists of a button and corresponding button press gesture. We gave
each button instance a unique name, e.g., red Button, and then assigned redButton as the
hit-target attribute value for the touch events within the expression for the button press
gesture. We also defined a change color callback to be executed on a successful button press.

We also implemented a soft keyboard for text entry. The keyboard is a container where
each key is a button subclassed from Proton’s built-in button press widget. We associated
each key with its own instances of the default button press gesture and callback. Thus,
we created 26 different buttons and button press gestures, one for each lower-case letter.
Adding a shift key for entering capital letters required creating a gesture for every shift key
combination, adding 26 additional gestures.

6.7.3 Application 3: EdgeWrite

Our third application re-implements EdgeWrite [140], a unistroke text entry technique where
the user draws a stroke through corners of a square to generate a letter. For example, to
generate the letter ‘b’, the user starts with a touch down in the NW corner, moves the finger
down to the SW corner, over to the SE corner, and finally back to the SW corner. Between
each corner, the touch moves through the center area ¢ (Figure 6.19 Left). We inserted
explicit touch-move nodes (gray and white circles) with new hit-target attribute values into
the gesture tablature to express that a touch must change target corner objects as it moves.
The gesture tablature for the letter ‘b’ and its corresponding regular expression are shown
in Figure 6.19 Right.

Our EdgeWrite implementation includes 36 expressions, one for each letter and numbers

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 100

Hl é p p
O
translatePaddle()

DY MixUR
translatePaddle()

o

L Player R Player

Figure 6.20: In this Pong game, the touch stream is split so one gesture matcher can process
touches from the left player and a second gesture matcher can process touches from the right
player. Both gesture matchers use the same gesture for controlling the paddle (‘p’).

0-9. Our static analyzer found that 18 gestures conflict because they all start in the NW
corner. The number of conflicts drops as soon as these gestures enter a second corner: 9
conflicts for the SW corner, 2 for the SE corner, and 7 for the NE corner. Our analyzer
found that none of the gestures that started in the NW corner immediately returned to the
NW corner which suggests that it would be possible to add a new short NW-NW gesture
for a frequently used command such as delete. Similarly the analyzer reported conflicts for
strokes starting in the other corners. We did not have to resolve these conflicts because
the callbacks execute only when the gestures are completed and none of the gestures are
identical. However, such analysis could be useful when designing a new unistroke command
to check that each gesture is unique.

6.7.4 Application 4: Pong

Some multitouch devices, such as the DiamondTouch [30, 89], directly provide a different
user ID for each person interacting with the device. For multitouch devices that do not
provide such identification, we can use screen location to simulate a user ID attribute. For
example in a two-player Pong game (Figure 6.20), touches originating on the left side of the
screen correspond to one user, and touches originating on the right correspond to a second
user. Using a single stream and gesture matcher would restrict the players so that only one
of them could move their paddle at any time. Splitting the stream by the location-based user
ID removes this restriction. Since each stream has its own gesture matcher, the system can
recognize paddle control gestures from both players at the same time. In this example the
developer could provide the same set of attributes and gesture expressions to both gesture
matchers. However, Proton also allows developers to register different sets of attributes and
gesture expressions to each gesture matcher.

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 101

6.8 User Study

To help us understand whether developers can benefit from the gesture matching and conflict
detection provided by Proton, we conducted a user study evaluating how quickly and accu-
rately developers comprehend gestures described using regular expressions, tablatures, and
i0S-style [6] event-handling code. We divided the study into two parts, with the first part
focusing on basic gestures that involved only the sequence of touch events and the second
part including trajectory-based gestures.

We recruited 12 participants (10 male, 2 female, ages between 20 and 51) who were all
experienced programmers. Each participant performed both parts of the study and each part
contained three blocks. Each block focused on one of the three gesture representations: tab-
lature, expression, and 10S. We counterbalanced the orderings of the gesture representations
so that each of the six possible orderings was performed by two participants.

6.8.1 Part 1: Basic Touch Event Sequences

The first part of the study tested how each gesture representation affects the participant’s
understanding of basic touch event sequences in a gesture. Gestures are often dependent on
the target of the touches, so we also included a single hit-target attribute: the type of target
hit by the touch.

At the start of each block, we gave the participant a tutorial on how to interpret a
multitouch gesture using the block’s gesture representation. We then asked the participant
to perform five gesture identification trials. The gestures were chosen such that each block
covered a range of different gestures with one, two, and three touches. For each trial, we
presented the participant with a gesture written in the block’s gesture representation and
a set of nine videos of a user performing gestures (Figure 6.21). We asked the participant
to identify which video matched the gesture. To mitigate learning effects, we reordered the
nine videos between blocks. Figure 6.22 contains screenshots of a node-linking gesture used
in the study.

For each trial, we were interested in only the time spent understanding the gesture.
However, participants would often spend significant time rewatching and searching videos
for the correct one, after having already understood the gesture. Thus, we measured time to
completion of a trial as the total trial time minus the video-playing time. We also checked
whether the participant chose the correct video.

Results. The average times to completion (Figure 6.23 Left) for identifying a gesture
were 23.50 seconds for tablature, 49.25 seconds for expression, and 110.99 seconds for iOS
event-handling (one way ANOVA F} 2o=>55.37, p<.001; all pairwise comparisons with Bonfer-
roni correction, p<.05, were also significant). Tablature was 2.1 times faster than expressions
and 4.7 times faster than event-handling. The average accuracies were 100% for tablature,
93.3% for expression, and 95% for i0OS event-handling, but the differences were not significant
(F2’22:1.20, p:320>

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 102

execute()

DZ M3«(D5 (3] MS)*D?(!\AA?I r\AAE’I I\AA?)*(U?(M?I M)<U5 | USIMS | MD)*US) M2x) US

execute()

_state = GesturePossible;

touchesDown(Array xtouches, Array *allTouches)
if(allTouches—>count() > 3)
_state = GestureFailed;
else if(allTouches—>count() == 1)
| =

if(touches[@]->target() ‘a’)
_state = GestureFailed;
else
if(touches[@]->target() != ‘b’)

_state = GestureFailed;

touchesMove(Array xtouches, Array *allTouches)
for(i = @; i < touches—>count(); i++)

if(touches[i]l->touchId() == @ && touches[i]l->target() != ‘a’)
_state = GestureFailed;
return;

else if(touches[il->touchId() != @ && touches[i]->target() !'= ‘b’")
_state = GestureFailed;
return;

if(allTouches—>count() == 3)
execute();

touchesUp(Array xtouches, Array xallTouches)

if(allTouches—>count() == 1)
if(touches[@]->touchId() == @ && touches[@]->target() == ‘a’)
_state = GestureRecognized;
else
_state = GestureFailed;
else
if(touches[@]->touchId() !'= @ && touches[@]->target() == ‘b’);
else

_state = GestureFailed;

Figure 6.21: In Part 1, the participant is shown a gesture and the participant must identify
the matching video.

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 103

| ammmildl FT
o | e

Figure 6.22: Screenshots of a video depicting a two-touch gesture for linking two nodes.

L0

140 Gesture Identification

120

100

o]
o

(o))
o

Time to Completion (s)

N
o

N
o

tablature expression i0S tablature expression i0S
Part 1 Part 2

Figure 6.23: The average time to completion for identifying a gesture in Part 1 and Part 2.
Standard error bars are shown.

6.8.2 Part 2: Trajectory Gestures

In the second part of the study we asked participants to identify gestures that use both
hit-target attribute and the direction attribute for specifying trajectory. For each block, we
asked participants to perform three trials of gesture identification. In each trial, we presented
a gesture and a set of four images, each depicting the gesture trajectory as red directed paths
drawn on a target. Participants chose which trajectory would be recognized by the given
gesture (Figure 6.24). As in the first task, for each trial we checked for correctness and
measured the time of completion.

Results. The average times to completion (Figure 6.23 Right) for identifying a gesture
were 17.82 seconds for tablature, 35.49 seconds for expression, and 75.29 seconds for iOS
event-handling (F}2,=21.30, p<.001; all pairwise comparisons were also significant). Tab-
lature was 2.0 times faster than expressions and 4.2 times faster than event-handling. All
participants had 100% accuracy rate in identifying the gestures for all three representations.

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 104

'; 2 a 4
a:0 aNW a0 aNE aNE ' ’ a
eedee .\)
a

(_next)

P PSR

Figure 6.24: In Part 2, the participant is shown a gesture and must identify the matching
trajectory.

6.8.3 Qualitative Results

In a post-study survey we asked participants to rate the representations for ease of com-
prehension. On a Likert scale of 1 (easiest) to 5 (hardest), the average score was 1.33 for
tablature, 2.92 for expression, and 4.13 iOS event-handling. A Kruskal Wallis test revealed a
significant effect of condition on Likert ratings (H=26.4, 2df, p<.001). Mann-Whitney tests
showed that all pairwise comparisons were also significant. When asked which representation
they would most like to design multitouch gestures with, 11 of the 12 participants preferred
tablature and the remaining participant preferred expression.

6.8.4 Discussion

Our results show that users are faster at identifying gestures in tablature form than in
expression or event-handling form. These results indicate that users can quickly learn and
understand gesture tablatures, which suggests users can also more quickly build and maintain
multitouch gestures written in tablature. Our results confirm that tablature is an effective
graphical representation for the underlying regular expression representation of gestures.
Our post-study survey also suggests that users prefer implementing multitouch gestures
with tablature over standard touch event-handling.

Participants generally preferred tablature as they found it obvious how “to express tem-
poral order” of the touches. They could mime the touch actions as they read the tablature.
They saw similar benefits with regular expressions, but were concerned that the “complex-
ity of the expressions could easily explode.” In contrast with tablature and expressions,
participants found it difficult to keep track of the gesture state in disparate event-handlers,
which required “too much jumping around the code” and “mental book-keeping.” However,

participants felt by having direct access to touch events, event-handling is “ostensibly more
flexible.”

6.9 Conclusion

As developers continue to build more multitouch applications, and users spend more time
interacting with them, our understanding of multitouch input will continue to improve. We
developed Proton from the recognition that current event-handling methods work well for

CHAPTER 6. REPRESENTING MULTITOUCH GESTURES AS REGULAR
EXPRESSIONS 105
mouse input, but not for multitouch. Proton directly addresses the challenges of building

and managing multitouch gesture sets. As researchers and application developers continue
to evolve the way we use multitouch input, multitouch developer tools should also evolve.

106

Chapter 7

Conclusions and Future Work

In this dissertation we investigated the benefits of multitouch input and the design and
development of multitouch applications. We conducted a pair of user studies that contribute
to the understanding of direct-touch, bimanual, and multifinger input. We then leveraged
multitouch benefits to design a fully functional multitouch application for a professional
content-creation task. From our experience building a complete multitouch application, we
identified the challenges of building multitouch gesture sets and developed a new multitouch
framework to aid in the creation and management of these gesture sets.

We summarize our contributions in more detail in Section 7.1 and we present several
avenues of future work in Section 7.2.

7.1 Contributions

In our multitarget selection study, we showed that users can select targets two times faster
with multitouch input than with mouse input. Since we compared direct-touch, bimanual,
and multifinger input in a single study, we were also able to separate the performance benefit
of each of these input techniques. We found that direct-touch input provides the majority
of the speed improvement (83%), and bimanual interaction using one finger on each hand
accounts for the remaining speedup. Users prefer using the index and middle fingers for
selection. Multifinger input provided no additional benefit and may in fact reduce targeting
accuracy. Tasks that require the selection of many targets such as file or photo reorganization
and the grouping and arrangement of graphical objects can benefit from the performance
advantage of multitouch target selection.

Our second study continued the investigation of bimanual interaction using one finger
per hand, but for drawing directional strokes in our novel two-handed marking menus. We
showed that for the two-handed simultaneous marking menu, users can draw pairs of strokes
simultaneously 10-15% faster than drawing one stroke at a time. Our two-handed ordered
menu exhibit less motion overlap between hands, but provide twice as many menu options
as the two-handed simultaneous marking menu with the same number of strokes. Our

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 107

marking menus are an effective menu selection technique and also show the value of bimanual
interaction supported by multitouch input.

We then demonstrated that a complete multitouch application can outperform a mouse
and keyboard application for a professional content-creation task. We developed Eden, a
multitouch application for building sets for computer-animated films, which an expert set
construction artist found to be more effective than Maya, a mouse and keyboard application
currently used by artists. We found that focusing on supporting one operation at a time
allowed us to design simple, memorable gestures that split the workload across two hands.
We presented a set of design guidelines and lessons learned from developing Eden, which
multitouch application developers can apply to building multitouch applications for other
professional workflows.

As multitouch hardware becomes more readily available and the demand for multitouch
applications increases, developers would benefit from improved tools to build such applica-
tions. We designed and developed Proton, a declarative multitouch framework that allows
developers to specify gestures as regular expressions, which provide automatic gesture match-
ing and static analysis of conflicts. In addition, we introduced gesture tablature, a graphical
notation that simplifies the creation of multitouch gestures. We showed that users can
interpret gesture tablature four times faster than traditional event-handling pseudocode.

Our dissertation contributes to the understanding of multitouch input, demonstrates the
viability of multitouch applications for professional users, and facilitates their development
through a novel declarative multitouch framework.

7.2 Future Work

Touch Precision: Eden demonstrated the viability of multitouch input for the specific
workflow of organic set construction. However, Eden also demonstrated the drawbacks of
touch input, including the fat finger problem [110] and occlusion [127]. Even organic set
construction, which requires less precision than general set construction, was not immune
to these drawbacks. A critical research path in pushing the use of multitouch into more
application areas is addressing these precision drawbacks. If touch precision continues to be
problematic, then it would be constructive to identify general attributes of workflows that
make them conducive to improved user performance through multitouch. Understanding
when multitouch is appropriate as input instead of the mouse can inform the design of
hybrid multitouch and mouse workstations, as multitouch and mouse input are not mutually
exclusive.

Automatic Relayout for Multitouch: To best leverage multitouch input, we de-
signed Eden from the ground up. This process required much creativity and many iterations
while consulting with a target expert user. A quicker path to gaining the benefits of direct-
touch input and bimanual interaction is to automatically relayout mouse-based interfaces for
use on a multitouch workstation. Gajos et al. [42] automatically adapted mouse interfaces
for various devices including single-touch screens. Small widgets designed for mouse input

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 108

were enlarged for touch input. Future work can investigate techniques for adapting interfaces
for full multitouch devices of varying display sizes. For example, widgets located at the top
of a mouse-based interface can be placed towards the user on a large horizontal multitouch
display, to reduce the distance required for the hands to reach them. Although a converted
interface may not approach the sophistication of a completely redesigned multitouch inter-
face, it can be a cheap way to bridge users from mouse-based workstation to multitouch
workstations.

Multitouch Ergonomics: Including multitouch input as part of a user’s workflow has
the potential to relieve users of repetitive strain injury (RSI) issues from using the mouse.
However, if multitouch becomes a significant component to a user’s workflow, then it is im-
portant to understand the long-term physical effects and potential RSI issues of multitouch.
Working with multitouch displays requires a different set of ergonomic considerations than
with traditional mouse and keyboard interfaces. Along with wrist motions, using multitouch
also involves both small finger motions and large arm motions. In addition, the form factor
of the device affects both the posture and the muscle groups required of the user. Multitouch
devices come in varying sizes, from handheld mobile devices to monitors for the desktop to
large collaborative screens. Large displays also come in varying orientations. Long term user
studies will help illuminate the RSI implications of multitouch.

Other Gestural Input Techniques: Proton focused on multitouch interaction, but
there are other gestural devices that still rely on standard event-handling to process mul-
tiple streams of parallel events. Multitouch devices report the contact of multiple fingers
on 2D surfaces, while devices like the Kinect [145] reports multiple joint positions of the
entire human body in 3D space. In-the-air 3D hand gestures [130] require the tracking and
processing of multiple hand joint positions. Even smartphones report data in addition to
touches, such as the acceleration and orientation of the device. With the right custom at-
tributes and extensions, Proton might be able to support the detection of gestures for these
input techniques.

109

Bibliography

[10]

[11]

[12]

3Dconnexion. SpaceNavigator. http://www.3dconnexion. com.

3M. Multi-Touch Displays. http://solutions.3m.com/wps/portal/3M/en_US/
TouchSystems/TouchScreen/Solutions/MultiTouch.

A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur. “Cooperative
task management without manual stack management”. In: Proceedings of the USENIX
Annual Technical Conference. USENIX Association, 2002, pp. 289-302.

C. Appert and M. Beaudouin-Lafon. “SwingStates: adding state machines to the
swing toolkit”. In: Proceedings of the 19th Annual ACM Symposium on User Interface
Software and Technology. ACM, 2006, pp. 319-322.

C. Appert and S. Zhai. “Using strokes as command shortcuts: cognitive benefits and
toolkit support”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2009, pp. 2289-2298.

Apple. iOS. http://developer.apple.com/technologies/ios.
Autodesk. Maya. http://www.autodesk.com/.

Autodesk. SketchBook Pro. http://usa.autodesk.com/adsk/servlet/pc/item?
siteID=123112&1d=15119465.

G. Bailly, E. Lecolinet, and L. Nigay. “Flower menus: a new type of marking menu
with large menu breadth, within groups and efficient expert mode memorization”. In:
Proceedings of the Working Conference on Advanced Visual Interfaces. ACM, 2008,
pp. 15-22.

R. Balakrishnan and P. Patel. “The PadMouse: facilitating selection and spatial po-
sitioning for the non-dominant hand”. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 1998, pp. 9-16.

R. Balakrishnan and K. Hinckley. “Symmetric bimanual interaction”. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2000,
pp. 33-40.

R. Balakrishnan and K. Hinckley. “The role of kinesthetic reference frames in two-
handed input performance”. In: Proceedings of the 12th Annual ACM Symposium on
User Interface Software and Technology. ACM, 1999, pp. 171-178.

BIBLIOGRAPHY 110

[13]

[14]

[15]

[21]

[22]

23]

W. C. Barnert. A comparison of one-handed and two-handed direct and indirect com-
puter interaction. Tech. rep. Medford, Mass.: Department of Computer Science, Tufts
University, Nov. 2005.

H. Benko, A. Wilson, and P. Baudisch. “Precise selection techniques for multitouch
screens” . In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2006, pp. 1263-1272.

F. Bevilacqua, B. Zamborlin, A. Sypniewski, N. Schnell, F. Guédy, and N. Rasami-
manana. “‘Continuous realtime gesture following and recognition”. In: Gesture in Em-
bodied Communication and Human-Computer Interaction. Vol. 5934. Lecture Notes
in Computer Science. 2010, pp. 73-84.

E. Bier. “Snap-dragging in three dimensions”. In: Symposium on Interactive 3D
Graphics 24 (2 1990), pp. 193-204.

E. Bier, M. Stone, K. Pier, W. Buxton, and T. DeRose. “Toolglass and magic lenses:
the see-through interface”. In: Proceedings of ACM SIGGRAPH. ACM, 1993, pp. 73—
80.

A. Blackwell. “Swyn: a visual representation for regular expressions”. In: Your Wish
1s My Command. Ed. by H. Lieberman. Morgan Kauffman, 2000, pp. 245-270.

T. Bleser and J. D. Foley. “Towards specifying and evaluating the human factors
of user-computer interfaces”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 1982, pp. 309-314.

P. Brandl, C. Forlines, D. Wigdor, M. Haller, and C. Shen. “Combining and measuring
the benefits of bimanual pen and direct-touch interaction on horizontal interfaces”. In:
Proceedings of the Working Conference on Advanced Visual Interfaces. ACM, 2008,
pp. 154-161.

W. Buxton. “Chunking and phrasing and the design of human-computer dialogues”.
In: Proceedings of IFIP World Computer Congress (1986), pp. 475-480.

W. Buxton and B. Myers. “A study in two-handed input”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, 1986, pp. 321—
326.

X. Cao, A. Wilson, R. Balakrishnan, K. Hinckley, and S. Hudson. “ShapeTouch:
leveraging contact shape on interactive surfaces”. In: Proceedings of the 3rd IEEFE

International Workshop on Horizontal Interactive Human-Computer Systems. IEEE,
2008, pp. 129-136.

M. Cardinaels, K. Frederix, J. Nulens, D. Van Rijsselbergen, M. Verwaest, and P.
Bekaert. “A multi-touch 3D set modeler for drama production”. In: Proceedings of
International Broadcasting Convention. 2008, pp. 330-335.

BIBLIOGRAPHY 111

[25]

[20]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

D. Casalta, Y. Guiard, and M. Beaudouin-Lafon. “Evaluating two-handed input tech-
niques: rectangle editing and navigation”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (Extended Abstracts). ACM, 1999, pp. 236—
237.

A. Cohé, F. Decle, and M. Hachet. “tBox: a 3D transformation widget designed
for touch-screens”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2011, pp. 3005-3008.

C. T. Dang and E. André. “Usage and recognition of finger orientation for multi-touch
tabletop interaction”. In: Proceedings of the 15th IFIP TC13 International Conference
on Human-Computer Interaction. Springer, 2011, pp. 409-426.

A. De Nardi. “Grafiti: Gesture Recognition mAnagement Framework for Interactive
Tabletop Interfaces”. MA thesis. University of Pisa, Italy, 2008.

J. Diedrichsen, E. Hazeltine, S. Kennerley, and R. B. Ivry. “Moving to directly cued
locations abolishes spatial interference during bimanual actions”. In: Psychological
Science 12(6) (2001), pp. 493-498.

P. Dietz and D. Leigh. “DiamondTouch: a multi-user touch technology”. In: Proceed-
ings of the 14th Annual ACM Symposium on User Interface Software and Technology.
ACM, 2001, pp. 219-226.

R. F. Dillon, J. D. Edey, and J. W. Tombaugh. “Measuring the true cost of com-
mand selection: techniques and results”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 1990, pp. 19-25.

Doug Engelbart Institute. Father of the mouse. http://www.dougengelbart.org/
firsts/mouse.html.

F. Echtler, M. Huber, and G. Klinker. Hand tracking for enhanced gesture recogni-
tion on interactive multi-touch surfaces. Technical Report , Technische Universitat
Munchen - Institut fur Informatik. 2007.

F. Echtler and G. Klinker. “A multitouch software architecture”. In: Proceedings of
NordiCHI 2008. ACM, 2008, pp. 463-466.

A. Esenther and K. Wittenburg. “Multi-user multi-touch games on DiamondTouch
with the DTFlash toolkit”. In: Intelligent Technologies for Interactive Entertainment.
Vol. 3814. 2005, pp. 315-319.

Fingerworks. iGesture. http://www.fingerworks.com.

C. Forlines, D. Wigdor, C. Shen, and R. Balakrishnan. “Direct-touch vs. mouse input
for tabletop displays”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, 2007, pp. 647—-656.

E. Franz, H. Zelaznik, S. Swinnen, and C. Walter. “Spatial conceptual influences on
the coordination of bimanual actions: when a dual task becomes a single task”. In:
Journal of Motor Behavior 33(1) (2001), pp. 103-112.

BIBLIOGRAPHY 112

[39]

[40]

[41]

[44]
[45]

[46]

[47]

[48]

[50]

[51]

Fraunhofer-Institute for Industrial Engineering. MT/j - Multitouch for Java. http:
//www.mt4dj.org.

B. Froehlich, J. Hochstrate, V. Skuk, and A. Huckauf. “The GlobeFish and the Globe-
Mouse: two new six degree of freedom input devices for graphics applications”. In:

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2006, pp. 191-199.

S. Gabrielli, S. Bellutti, A. Jameson, C. Leonardi, and M. Zancanaro. “A single-user
tabletop card game system for older persons: general lessons learned from an in-
situ study”. In: Proceedings of the 3rd IEEE International Workshop on Horizontal
Interactive Human-Computer Systems. IEEE, 2008, pp. 85-88.

K. Gajos and D. S. Weld. “SUPPLE: automatically generating user interfaces”. In:
Proceedings of the 9th International Conference on Intelligent User Interfaces. ACM,
2004, pp. 93-100.

D. Gibbon, U. Gut, B. Hell, K. Looks, A. Thies, and T. Trippel. “A computational
model of arm gestures in conversation”. In: Proceedings of Eurospeech. 2003, pp. 813—
816.

Google. Android. http://www.android. com.

Y. Guiard. “Asymmetric division of labor in human skilled bimanual action: the
kinematic chain as a model”. In: Journal of Motor Behavior 19(4) (1987), pp. 486—
o17.

Y. Guiard and T. Ferrand. “Asymmetry in bimanual skills”. In: Manual Asymmetries
i Motor Performance, CRC Press., 1995.

J. Han. “Low-cost multi-touch sensing through frustrated total internal reflection”.
In: Proceedings of the 18th Annual ACM Symposium on User Interface Software and
Technology. ACM, 2005, pp. 115-118.

M. Hancock, S. Carpendale, and A. Cockburn. “Shallow depth 3D interaction: design
and evaluation of one—, two—, and three—touch techniques”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, 2007, pp. 1147—
1156.

T. E. Hansen, J. P. Hourcade, M. Virbel, S. Patali, and T. Serra. “PyMT: a post-
WIMP multi-touch user interface toolkit”. In: Proceedings of the ACM International
Conference on Interactive Tabletops and Surfaces. ACM, 2009, pp. 17-24.

T. R. Henry, S. E. Hudson, and G. L. Newell. “Integrating gesture and snapping into
a user interface toolkit”. In: Proceedings of the 3rd Annual ACM Symposium on User
Interface Software and Technology. ACM, 1990, pp. 112-122.

K. Hinckley, M. Czerwinski, and M. Sinclair. “Interaction and modeling techniques
for desktop two—handed input”. In: Proceedings of the 11th Annual ACM Symposium
on User Interface Software and Technology. ACM, 1998, pp. 49-58.

BIBLIOGRAPHY 113

[52]

[53]

[59]

[60]

[61]

[62]

[63]

[64]

K. Hinckley, R. Pausch, D. Proffitt, and N. Kassell. “T'wo—handed virtual manipula-
tion”. In: ACM Transactions on Computer-Human Interaction 5(3) (1998), pp. 260
302.

K. Hinckley, R. Pausch, D. Proffitt, J Patten, and N. Kassell. “Cooperative bimanual
action”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 1997, pp. 27-34.

S. E. Hudson, J. Mankoff, and I. Smith. “Extensible input handling in the subArctic
toolkit”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2005, pp. 381-390.

P. Isokoski and M. Kaki. “Comparison of two touchpad-based methods for numeric
entry”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2002, pp. 25-32.

R. J. K. Jacob. “A specification language for direct-manipulation user interfaces”. In:
ACM Transactions on Graphics 5.4 (Oct. 1986), pp. 283-317.

R. J. K. Jacob. “Executable specifications for a human-computer interface”. In: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,
1983, pp. 28-34.

R. J. K. Jacob, L. Deligiannidis, and S. Morrison. “A software model and specification
language for non-WIMP user interfaces”. In: ACM Transactions on Computer-Human
Interaction 6.1 (1999), pp. 1-46.

P. Kabbash, W. Buxton, and A. Sellen. “T'wo-handed input in a compound task”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 1994, pp. 417-423.

D. Kammer, G. Freitag, M. Keck, and M. Wacker. “Taxonomy and overview of multi-
touch frameworks: architecture, scope and features”. In: Workshop on Engineering
Patterns for Multitouch Interfaces (2010).

D. Kammer, J. Wojdziak, M. Keck, R. Groh, and S. Taranko. “Towards a formaliza-
tion of multi-touch gestures”. In: Proceedings of the ACM International Conference
on Interactive Tabletops and Surfaces. ACM, 2010, pp. 49-58.

J. Karat, J. McDonald, and M. Anderson. “A comparison of selection techniques:
touch panel, mouse keyboard”. In: International Journal of Man-Machine Studies
25(1) (1986), pp. 73-92.

A. K. Karlson, B. B. Bederson, and J. SanGiovanni. “AppLens and LaunchTile: two
designs for one-handed thumb use on small devices”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 2005, pp. 201-210.

D. Kaser, M. Agrawala, and M. Pauly. “FingerGlass: efficient multiscale interaction
on multitouch screens”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, 2011, pp. 1601-1610.

BIBLIOGRAPHY 114

[65]
[66]

[67]

[74]

[75]

[76]

[77]

J. A. S. Kelso. “Phase transitions and critical behavior in human bimanual coordina-
tion”. In: American Journal of Physiology 15 (1984), R1000-R1004.

J. A.S. Kelso, D. L. Southard, and D. Goodman. “On the coordination of two-handed
movements”. In: Journal of Ezperimental Psychology 5(2) (1979), pp. 229-238.

J. A.S. Kelso, D. L. Southard, and D. Goodman. “On the nature of human interlimb
coordination”. In: Journal of Ezperimental Psychology 203(4384) (1979), pp. 1029-
1031.

S. H. Khandkar and F. Maurer. “A domain specific language to define gestures for
multi-touch applications”. In: 10th Workshop on Domain-Specific Modeling (2010).

K. Kin, M. Agrawala, and T. DeRose. “Determining the benefits of direct-touch,
bimanual, and multifinger input on a multitouch workstation”. In: Proceedings of
Graphics Interface 2009. CHCCS, 2009, pp. 119-124.

K. Kin, B. Hartmann, and M. Agrawala. “T'wo-handed marking menus for multitouch
devices”. In: ACM Transactions on Computer-Human Interaction 18.3 (July 2011),
16:1-16:23.

K. Kin, B. Hartmann, T. DeRose, and M. Agrawala. “Proton++: a customizable
declarative multitouch framework”. In: Proceedings of the 25th Annual ACM Sympo-
sium on User Interface Software and Technology. ACM, 2012, pp. 477-486.

K. Kin, B. Hartmann, T. DeRose, and M. Agrawala. “Proton: multitouch gestures as
regular expressions”. In: Proceedings of the SIGCHI Conference on Human Factors
i Computing Systems. ACM, 2012, pp. 2885-2894.

K. Kin, T. Miller, B. Bollensdorff, T. DeRose, B. Hartmann, and M. Agrawala. “Eden:
a professional multitouch tool for constructing virtual organic environments”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2011, pp. 1343-1352.

M. Kobayashi and T. [garashi. “Boomerang: suspendable drag-and-drop interactions
based on a throw-and-catch metaphor”. In: Proceedings of the 20th Annual ACM
Symposium on User Interface Software and Technology. ACM, 2007, pp. 187-190.

T. Koltringer, P. Isokoski, and T. Grechenig. “TwoStick: writing with a game con-
troller”. In: Proceedings of Graphics Interface 2007. CHCCS, 2007, pp. 103-108.

G. Kurtenbach and W. Buxton. “The limits of expert performance using hierarchic
marking menus”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 1993, pp. 258-264.

G. Kurtenbach and W. Buxton. “User learning and performance with marking menus”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 1994, pp. 258264

G. Kurtenbach. “The design and evaluation of marking menus”. PhD thesis. Toronto,
Ontario Canada: University of Toronto, 1993.

BIBLIOGRAPHY 115

[79]

[80]

[81]

[82]

[83]

S. Lao, X. Heng, G. Zhang, Y. Ling, and P. Wang. “A gestural interaction design
model for multi-touch displays”. In: Proceedings of British Computer Society Confer-
ence on Human-Computer Interaction. 2009, pp. 440-446.

C. Latulipe, C. Kaplan, and C. Clarke. “Bimanual and unimanual image alignment:
an evaluation of mouse-based techniques”. In: Proceedings of the 18th Annual ACM
Symposium on User Interface Software and Technology. ACM, 2005, pp. 123-131.

C. Latulipe, S. Mann, C. Kaplan, and C. Clarke. “SymSpline: symmetric two-handed
spline manipulation”. In: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, 2006, pp. 349-358.

G. J. Lepinski, T. Grossman, and G. Fitzmaurice. “The design and evaluation of
multitouch marking menus”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2010, pp. 2233-2242.

H. Lii and Y. Li. “Gesture Coder: a tool for programming multi-touch gestures by
demonstration”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2012, pp. 2875-2884.

A. Martinet, G. Casiez, and L. Grisoni. “The design and evaluation of 3D positioning
techniques for multi-touch displays”. In: IEEE Symposium on 3D User Interfaces
(Mar. 2010), pp. 115-118.

M. Masliah and P. Milgram. “Measuring the allocation of control in a 6 degree-of-
freedom docking experiment”. In: Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. ACM, 2000, pp. 25-32.

M. J. McGuffin, N. Burtnyk, and G. Kurtenbach. “FaST Sliders: integrating marking
menus and the adjustment of continuous values”. In: Proceedings of Graphics Interface
2002. CHCCS, 2002, pp. 35-41.

F. Mechsner, D. Kerzel, G. Knoblich, and W. Prinz. “Perceptual basis of bimanual
coordination”. In: Nature 414 (2001), pp. 69-73.

N. Mehta. “A Flexible Machine Interface”. MA thesis. Toronto, Ontario Canada:
University of Toronto, 1982.

MERL. DiamondTouch. http://www.merl.com/projects/DiamondTouch/.

Microsoft. Pixelsense.
http://www.microsoft.com/en-us/pixelsense/default.aspx.

Microsoft. Surface 1.0.
http://technet.microsoft.com/en-us/library/ee692114 (v=surface.10).

Microsoft. Windows 7.
http://www.microsoft.com/en-US/windows7/products/home.

Microsoft. Windows phone. http://www.microsoft.com/windowsphone.

BIBLIOGRAPHY 116

[94]

[95]

[96]

[103]
[104]

[105]

[106]

[107]

[108]

J. Moeller and A. Kerne. “ZeroTouch: an optical multi-touch and free-air interac-
tion architecture”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2012, pp. 2165-2174.

M. Morris, J. Wobbrock, and A. Wilson. “Understanding users’ preferences for surface
gestures”. In: Proceedings of Graphics Interface 2010. CHCCS, 2010, pp. 261-268.

M. Morris. “Supporting effective interaction with tabletop groupware”. PhD thesis.
Stanford University, 2006.

T. Moscovich. “Contact area interaction with sliding widgets”. In: Proceedings of the
22nd Annual ACM Symposium on User Interface Software and Technology. ACM,
2009, pp. 13-22.

M. Moyle and A. Cockburn. “Analysing mouse and pen flick gestures”. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2002,
pp. 19-24.

B. A. Myers. “A new model for handling input”. In: ACM Transactions on Informa-
tion Systems 8.3 (1990), pp. 289-320.

W. M. Newman. “A system for interactive graphical programming”. In: Proceedings
of AFIPS 1968 (Spring) (1968), pp. 47-54.

NUI Group. Touchlib. http://nuigroup.com/touchlib.

D. L. Odell, R. C. Davis, A. Smith, and P. K. Wright. “Toolglasses, marking menus,
and hotkeys: a comparison of one and two-handed command selection techniques”.
In: Proceedings of Graphics Interface 2004. CHCCS, 2004, pp. 17-24.

D. Olsen. “Building interactive systems: principles for human-computer interaction”.
In: Boston, MA, United States: Course Technology Press, 2009, pp. 43-66.

D. R. Olsen Jr. and E. P. Dempsey. “Syngraph: a graphical user interface generator”.
In: Proceedings of ACM SIGGRAPH. ACM, 1983, pp. 43-50.

D. Ostroff and B. Schneiderman. “Selection devices for users of an electronic encyclo-
pedia: an empirical comparison of four possibilities”. In: Information Processing and
Management 24(6) (1988), pp. 665-680.

R. Owen, G. Kurtenbach, G. Fitzmaurice, T. Baudel, and W. Buxton. “When it gets
more difficult, use both hands: exploring bimanual curve manipulation”. In: Proceed-
ings of Graphics Interface 2005. CHCCS, 2005, pp. 17-24.

P. Peltonen, E. Kurvinen, A. Salovaara, G. Jacucci, T. [lmonen, J. Evans, A. Oulasvir-
ta, and P. Saarikko. “It’s mine, don’t touch!: interactions at a large multi-touch display
in a city centre”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2008, pp. 1285-1294.

Perceptive Pizel. http://www.perceptivepixel.com/.

BIBLIOGRAPHY 117

109]

[110]

[111]

[112]
[113]

[114]

[115]
[116]

[117]

[118]

[119]

[120]

[121]

[122]

K. Perlin. “Quikwriting: continuous stylus-based text entry”. In: Proceedings of the
11th Annual ACM Symposium on User Interface Software and Technology. ACM,
1998, pp. 215-217.

R. L. Potter, L. J. Weldon, and B. Shneiderman. “Improving the accuracy of touch
screens: an experimental evaluation of three strategies”. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. ACM, 1988, pp. 27-32.

G. Ramos, M. Boulos, and R. Balakrishnan. “Pressure widgets”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, 2004, pp. 487—
494.

J. Raskin. The Humane Interface. Addison Wesley, 2000.

J. Reisman, P. Davidson, and J. Han. “A screen-space formulation for 2D and 3D
direct manipulation”. In: Proceedings of the 22nd Annual ACM Symposium on User
Interface Software and Technology. ACM, 2009, pp. 69-78.

J. Rekimoto. “SmartSkin: an infrastructure for freehand manipulation on interactive
surfaces”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2002, pp. 113-120.

I. Rosenberg and K. Perlin. “The UnMousePad: an interpolating multi-touch force-
sensing input pad”. In: Proceedings of ACM SIGGRAPH. ACM, 2009, 65:1-65:9.

D. Rubine. “Specifying gestures by example”. In: Proceedings of ACM SIGGRAPH.
ACM, 1991, pp. 329-337.

C. Scholliers, L. Hoste, B. Signer, and W. De Meuter. “Midas: a declarative multi-
touch interaction framework”. In: Proceedings of the 5th International Conference on
Tangible, Embedded, and Embodied Interaction. ACM, 2011, pp. 49-56.

J. Schwarz, S. E. Hudson, J. Mankoff, and A. D. Wilson. “A framework for robust
and flexible handling of inputs with uncertainty”. In: Proceedings of the 23rd Annual
ACM Symposium on User Interface Software and Technology. ACM, 2010, pp. 47-56.

S. D. Scott, K. D. Grant, and R. L. Mandryk. “System guidelines for co-located, col-
laborative work on a tabletop display”. In: Proceedings of the 8th Furopean Confer-
ence on Computer-Supported Cooperative Work. Kluwer Academic Publishers, 2003,

pp. 159-178.

A. Sears and B. Shneiderman. “High precision touchscreens: design strategies and
comparisons with a mouse”. In: International Journal of Man-Machine Studies 34(4)
(1991), pp. 593-613.

O. Shaer and R. J. K. Jacob. “A specification paradigm for the design and imple-
mentation of tangible user interfaces”. In: ACM Transactions on Computer-Human
Interaction 16.4 (2009).

B. Shneiderman. “Direct manipulation: a step beyond programming languages”. In:
Computer. Vol. 16(8). Aug. 1983, pp. 57-69.

BIBLIOGRAPHY 118

[123]

[124]
[125]

[126]

[127]

[128]

129]

[130]

[131]

[132]
[133]

[134]

[135]

[136]

[137]

M. Sipser. In: Introduction to the Theory of Computation. 1st. International Thomson
Publishing, 1996, pp. 46,70-76.

Sparsh Ul http://code.google.com/p/sparsh-ui.

S. Swigart. Fasily write custom gesture recognizers for your tablet PC' applications.
Microsoft Technical Report. Nov. 2005.

K. Thompson. “Regular expression search algorithm”. In: Communications of the
ACM 11.6 (1968), pp. 419-422.

D. Vogel and R. Balakrishnan. “Occlusion-aware interfaces”. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, 2010, pp. 263—
272.

D. Vogel and P. Baudisch. “Shift: a technique for operating pen-based interfaces using
touch”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2007, pp. 657-666.

F. Wang, X. Cao, X. Ren, and P. Irani. “Detecting and leveraging finger orientation
for interaction with direct-touch surfaces”. In: Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and Technology. ACM, 2009, pp. 23-32.

R. Wang, S. Paris, and J. Popovi¢. “6D hands: markerless hand-tracking for computer
aided design”. In: Proceedings of the 24th Annual ACM Symposium on User Interface
Software and Technology. ACM, 2011, pp. 549-558.

C. Ware and D. Jessom. “Using the Bat: a six-dimensional mouse for object place-
ment”. In: IEEE Computer Graphics € Applications 8(6) (1988), pp. 65-70.

Weegie. http://weegie.sourceforge.net.

W. Westerman. “Hand tracking, finger identification, and chordic manipulation on a
multi-touch surface”. PhD thesis. University of Delaware, 1999.

D. Wigdor, G. Perm, K. Ryall, A. Esenther, and C. Shen. “Living with a tabletop:
analysis and observations of long term office use of a multi-touch table”. In: Pro-
ceedings of the 2nd IEEE International Workshop on Horizontal Interactive Human-
Computer Systems. IEEE, 2007, pp. 60-67.

D. Wigdor, H. Benko, J. Pella, J. Lombardo, and S. Williams. “Rock & rails: extending
multi-touch interactions with shape gestures to enable precise spatial manipulations”.
In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2011, pp. 1581-1590.

A. Wilson and M. Agrawala. “Text entry using a dual joystick game controller”. In:
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2006, pp. 475-478.

A. Wilson, S. Izadi, O. Hilliges, A. Garcia-Mendoza, and D. Kirk. “Bringing physics

to the surface”. In: Proceedings of the 21st Annual ACM Symposium on User Interface
Software and Technology. ACM, 2008, pp. 67-76.

BIBLIOGRAPHY 119

138

[139]

[140]

[141]

[142]

[143]

[144]
[145]
[146]

[147]

148

[149]

[150]

J. Wobbrock, M. Morris, and A. Wilson. “User-defined gestures for surface comput-
ing”. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2009, pp. 1083-1092.

J. Wobbrock, A. Wilson, and Y. Li. “Gestures without libraries, toolkits or training: a
$1 recognizer for user interface prototypes”. In: Proceedings of the 20th Annual ACM
Symposium on User Interface Software and Technology. ACM, 2007, pp. 159-168.

J. O. Wobbrock, B. A. Myers, and J. A. Kembel. “Edgewrite: a stylus-based text
entry method designed for high accuracy and stability of motion”. In: Proceedings of
the 16th Annual ACM Symposium on User Interface Software and Technology. ACM,
2003, pp. 61-70.

C. D. Worth. zstroke.
http://pandora.east.isi.edu/xstroke/usenix_2003.

M. Wu and R. Balakrishnan. “Multi-finger and whole hand gestural interaction tech-
niques for multi-user tabletop displays”. In: Proceedings of the 16th Annual ACM
Symposium on User Interface Software and Technology. ACM, 2003, pp. 193-202.

M. Wu, C. Shen, K. Ryall, C. Forlines, and R. Balakrishnan. “Gesture registration,
relaxation, and reuse for multi-point direct-touch surfaces”. In: Proceedings of the 1st

IEEE International Workshop on Horizontal Interactive Human-Computer Systems
2006. IEEE, 2006, pp. 185-192.

Xbox. http://www.xbox.com/.
Xbox. Kinect. http://www.xbox.com/kinect.

K. Yatani, K. Partridge, M. Bern, and M. W. Newman. “Escape: a target selection
technique using visually-cued gestures”. In: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems. ACM, 2008, pp. 285-294.

S. Zhao, M. Agrawala, and K. Hinckley. “Zone and polygon menus: using relative
position to increase the breadth of multi-stroke marking menus”. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2006,
pp. 1077-1086.

S. Zhao and R. Balakrishnan. “Simple vs. compound mark hierarchical marking
menus”. In: Proceedings of the 17th Annual ACM Symposium on User Interface Soft-
ware and Technology. ACM, 2004, pp. 33—44.

S. Zhao, P. Dragicevic, M. Chignell, R. Balakrishnan, and P. Baudisch. “Earpod: eyes-
free menu selection using touch input and reactive audio feedback”. In: Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 2007,
pp- 1395-1404.

T. Zimmerman, J. Lanier, C. Blanchard, S. Bryson, and Y. Harvill. “A hand gesture
interface device”. In: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 1987, pp. 189-192.

