
Software against humanity?

An Illichian perspective on the industrial era of software

Stephen Kell

S.R.Kell@kent.ac.uk

University of Kent

p.1

Introductions
! about me

! about you?

Then

! Illichian ideas outlined

! software as an industrial institution

! the institution not working

! transferring the Illichian

p.2

About me
Most of my research is ‘core CS’:

! programming language implementation

! operating systems

! software extensibility, debuggability, liveness. . .

p.3

p.4

p.5

How did I get here?

I dabble with history and philosophy of CS, because

! it’s interesting!

! (+ an accident)

but also from frustration with core CS. . . :

! a-historical

! ‘chasing the stick’

! indifferent to ‘big questions’

p.6

Apology for an impressionistic talk

p.7

Reasons to be sceptical (part 3?)

Examples of research malaise:

! software performance viewpoint unchanged from 1970s

! interoperability problems remain ‘black sheep’

! paradigms increasingly entrenched

Examples of practical malaise:

! increase of ‘hello-world complexity’

! hardware advances soaked up, increasingly invisible

! subversion of 1960s–80s idealism

" open-source, internet, . . .

p.8

Technology’s headline capabilities continue to improve.

But the distribution of those abilities

! across scenarios

! across people

. . . seems to be stagnant or worsening.

! not just in equitability of share

! . . . in absolute capability of the median constituent!

p.9

We performed a ‘blank string’ search against
the Users table. . . . Ultimately we found that our
self-imposed response time threshold of 3 seconds
was crossed at 3000 users.

p.10

(a 123-line Ruby file. . .)
p.11

“A falling tide sinks all boats.”

p.12

Ivan Illich (1926–2002)

“A few patients
survived longer with transplants
of various organs. On the other
hand, the total social cost exacted by
medicine ceased to be measurable in
conventional terms. Society can have
no quantitative standards by which
to add up the illusion, social control,
prolonged suffering, loneliness,
genetic deterioration, and frustration
produced by medical treatment.”

—from ‘Tools for Conviviality’ (1973)

p.13

Criticism of institutions
Illich most famously critiqued three institutions:

! institutionalised education

! modern medicine

! car-based transportation & planning

He observed that each was poor at its stated ends. . .

! the means and ends had become confused!

! can still be self-sustaining

! can still claim advances by its own criteria

Design of our institutions is key: technical + political

p.14

‘It is not strictly necessary to accept 1913 and 1955 as two
watershed years in order to understand that early in the
century medical practice emerged into an era of scientific
verification of its results. And later medical science itself
became an alibi for the obvious damage caused by the
medical professional.’

p.15

“The invention of the ball-bearing. . .
signaled a true. . . political
choice . . . between more freedom
in equity and more speed. The
bearing is an equally fundamental
ingredient of two new types
of locomotion . . . symbolized by
the bicycle and the car. The bicycle
lifted man’s auto-mobility into a
new order, beyond which progress is
theoretically not possible. In contrast,

the accelerating individual capsule enabled societies to
engage in a ritual of progressively paralyzing speed.”

—from ‘Energy and Equity’ (1974)
p.16

‘Bicycles for the mind’

Maybe we’ve got ‘cars for the mind’ instead?

! ‘progressively paralyzing’ computational power

! ‘one class. . . monopolizes. . . ’

! ‘create distances for all and shrink them for only a few’

p.17

Some Illichian phenomena:

! creeping yet ‘watershed’ transitions. . .

! . . . from real to counter-productivity. . .

! . . . of institutions

! societal cost/benefit vs governing elites

! ‘radical monopoly’—the exclusion of alternative means

p.18

Some software phenomena:

! bootstrapping, recursion. . . (self-application)

! a tendency to expand over time

! a tendency to induce demand for itself

! a tendency to create exclusive institutions

! consumed by many, controlled by few

! creeping transition. . .

! . . . from ‘net enabling’ to ‘net enslaving’?

p.19

p.20

Some software hypotheses:

! ‘code complexity per unit value’ is increasing

! overriding research culture is one of ‘escalation’

" applying more software to the problems of software

" . . . believed will overcome, not worsen, problems

! culture and technology form a feedback loop

" e.g. additiveness and monotonicity in programming

" (cf. differencing or reconciliation. . .)

! de-escalating has potential value

" ‘doing more with less’, cf. more with more

p.21

p.22

p.23

p.24

“When we undertake to write a compiler,
we begin not by saying ‘What table
mechanism shall we use?’ but ‘What table
mechanism shall we build?’ . . . [My vision
is that the builder] will be able to say ‘I will
use a String Associates A4 symbol table, in
size 500x8,’ and therewith consider it done.
As a bonus he may later experiment with

alternatives to this choice, without incurring extreme costs.”

p.25

Some parts of McIlroy’s vision did come to pass

! extensive software libraries

Some didn’t

! fine-grained libraries

! ‘alternatives. . . without extreme costs’

Some other things happened:

! industrial ‘optimisation mindset’

! means and ends confused

p.26

p.27

p.28

Some well-known programming wisdom:

“Everyone knows that debugging
is twice as hard as writing a program
in the first place. So if you’re as
clever as [possible] when you write
it, how will you ever debug it?”

—Brian Kernighan
from The Elements of Programming Style (with P.J. Plauger)

p.29

Some well-known programming wisdom:

“Everyone knows that debugging
is twice as hard as writing a program
in the first place. So if you’re your
compiler is as clever as [possible]
when you write it optimises
it, how will you ever debug it?”

p.30

Compilers are very advanced machines

A tiny example due to Chris Lattner. . .

void contains null check (int ∗P) {

int dead = ∗P;

if (P == 0)

return;

∗P = 4;

}

After optimization, it becomes (effectively)

void contains null check (int ∗P) {

∗P = 4;

}

Why? ‘It’s permitted by undefined behaviour in C.’

p.31

Why really?

C compilers have become extreme ‘performance squeezers’.

They don’t have to be. It’s counterproductive!

! greater effort per unit product

! harder to debug → workarounds, not fixes

And so it escalates:

! increasing ‘expertise’ required of programmer

! more {complex, fragmented} tooling

! generate more work to ‘rewrite the C’

! more code → more demand for optimisation (!)

We become invested deeper and deeper in this cycle.
p.32

p.33

Software performance is no longer about infrastructure!

It’s a systemic problem of how software is developed.

New roads induce new traffic. Systemic, not ‘choice’.

Infrastructure gains are soaked up by a ‘software sponge’.

It is not simply ‘saving time to spend on features’.

Escalation ensures features remain costly to implement.

The malaise is with the industrial roots of software culture.

p.34

Functional languages are no better

Lest you think I was just ranting about the madness of C. . .

We’ve proved ‘well-typed programs don’t go wrong’!

Let’s get rid of those run-time tags. . .

The concern of machine efficiency has trumped all others. . .

Even ones we all agree are more important!

Assumption is always: the next software will fix this.

‘Solving a crisis by escalation.’

p.35

“A few patients
survived longer with transplants
of various organs. On the other
hand, the total social cost exacted by
medicine ceased to be measurable in
conventional terms. Society can have
no quantitative standards by which
to add up the illusion, social control,
prolonged suffering, loneliness,
genetic deterioration, and frustration
produced by medical treatment.”

—from ‘Tools for Conviviality’ (1973)

p.36

The blame game

Escalators can often be identified by blaming the human.

‘Fix your code!’

‘Remember: we work for the machines!’

p.37

Another escalator: ‘let’s make a new X’

Maybe you don’t like C. So create a new language!

How will people interface with older code? Hmm. . .

struct Point

{

int x ;

int y ;

};

p.38

Local<Value> GetPointX(Local<String> prop,

const AccessorInfo &info) {

Local<Object> self = info.Holder();

Local<External> wrap = Local<External>::Cast(self->

GetInternalField(0));

void* ptr = wrap->Value();

int value = static_cast<Point*>(ptr)->x_;

return Integer::New(value);

}

void SetPointX(Local<String> prop, Local<Value> value,

const AccessorInfo& info) {

Local<Object> self = info.Holder();

Local<External> wrap = Local<External>::Cast(self->

GetInternalField(0));

void* ptr = wrap->Value();

static_cast<Point*>(ptr)->x_ = value->Int32Value();

} p.39

What just happened

We revere the internal and denigrate the external.

! special word: legacy

This disregard is not shared by empirical science

! ‘external validity’

Nor is it shared by all engineers

! design as a discipline

Massively counterproductive.

! ++integration cost, ++reimplementation

! --tool power, --maintainability
p.40

Monotonicity yes; reconciliation no

Forking off a new whatever is just ‘what we do’.

It is perceived as a free operation.

Integration is someone else’s problem. . .

. . . and affects only people who have themselves to blame.

They should have used the shiny new thing from the start!

It’s the future!

p.41

Better ways: possible, but still not done

“Integration is linking your .o files together,
freely intercalling functions. you don’t have
a foreign loader, you don’t coerce types across
function-call boundaries, you don’t make one
language dominant, and you don’t make the woes
of your implementation technology impact the
entire system.

“[All these] can be addressed in a Lisp
implementation. This is just not the way Lisp
implementations have been done. . . ”

—Richard P. Gabriel
“Lisp: good news, bad news, how to win big”
AI Expert, 1994

p.42

Re: [v8-users] Re: Making v8::Persistent safe to use

Jun 21, 2013 1:34 AM
Posted in group: v8-users

On Fri , Jun 21, 2013 at 9:19 AM, Dan Carney <dca...@chromium.org>
wrote:

The transition from Local to Handle won't happen for a while. It's more
of a cleanup step after everything else is done, and there's no urgency
since there shouldn't be any performance impact.

The callback signature changes alone break almost every single line of
v8-using code i've written (tens of thousands of them), and i am still
undecided as to whether to spend several weeks of my time patching for

p.43

p.44

p.45

‘I speak about radical monopoly when one industrial
production process exercises an exclusive control over the
satisfaction of a pressing need, and excludes nonindustrial
activities from competition. Cars thus monopolize traffic. . . .
That motor traffic curtails the right to walk, not that more
people Chevies than Fords, constitutes radical monopoly.’

p.46

Illich would say. . .

Among linked software, there is a radical monopoly

It is a monopoly of the recent.

‘If you can’t keep up with change, that’s your problem.’

This affects anyone on a budget (including researchers).

It’s not ‘your’ problem; it’s one of technologies and tools.

. . . and the culture which created them

. . . and the culture which they create.

p.47

Energy as inequity

Sometimes, a little project will become ‘hot’.

Investment of effort in a codebase is good, surely?

Maybe not, if it lessens others’ ability to benefit

The more power expended on a codebase

. . . the more power is needed to use or contribute

Think: Linux kernel, Android, LLVM, . . .

p.48

What can we do about all this?
! opt out of society?

! take shelter from the worst?

! join in, and enjoy job security?

p.49

Yet more advanced technology. . . ?

p.50

Illich: “I have chosen ‘convivial’ as a technical term to
designate a modern society of responsibly limited tools.”

“Commuter transportation leads to negative returns when it
admits, anywhere in the system, speeds much above those
reached on a bicycle.”

p.51

‘Responsible self-limitation’

We are quite used to this idea.

One example: information hiding

Another example: pure functional programming

These are evidently not the only limitations needed.

They may not even be among the best ones to choose.

To advance, we need new ways to limit ourselves.

p.52

Self-limitation 1: against performance-squeezing

It is hard to definitively forbid ‘performance squeezing’.

One idea: for language impls, insist on debuggability.

Ask: what are the externalities?

Ask: what story do the metrics not tell?

Performance comes at what cost? (aside: or what COST?)

p.53

Self-limitation 2: if it stacks, it must federate

Pre-Internet, sending e-mail across networks was possible

! . . . if the right gateways were available + running

Deploying new applications was beyond the means of most

p.54

Self-limitation 2: if it stacks, it must federate

IP: an interface that federated the network abstraction

! obviated the escalating need for ALGs

What else can we federate?
p.55

Self-limitation 2: if it stacks, it must federate

My own liballocs project federates memory abstractions

! Unix memory is no longer raw bytes; ‘typed allocations’

! a step towards federating high-level language impls

p.56

Federability is also what separates O-O from ADTs. . .

! Cook, Onward! 2009

‘Interoperability’ has been named the essence of
object-orientation

! Aldrich, Onward! 2013

p.57

Self-limitation 3: degradeable hiding

“The formats of control blocks used in
queues in operating systems and similar
programs must be hidden within a ‘con-
trol block module’. It is conventional to
make such formats the interfaces between
various modules. Because design evolution
forces frequent changes on control block
formats, such a decision often proves ex-
tremely costly.”

D.L. Parnas

On the criteria to be used in decomposing systems into modules

CACM, December 1972

p.58

“One of the reasons why many old MIDI
instruments continue to be musically vi-
able is. . . due [to] a means for external-
izing the complete state of a musical de-
vice: all its patches, voice parameters, and
settings. MIDI’s designers only anticipated
[these messages’] use as a means for load-

ing and saving patches to and from external storage. In prac-
tice, however, this [also] enabled an unexpected ecosystem of
third-party, software-based patch editors and alternative con-
trol hardware to emerge. ”

Colin Clark and Antranig Basman

Tracing a Paradigm for Externalization, 2017

p.59

Information hiding is a heuristic based on anticipation.

‘I predict these details might change. Hide them.’

‘I predict these details won’t change. Expose them.’

What if our predictions are wrong?

We get this wrong all the time. Interface churn!

‘Hard’ abstraction is a recipe for disposability.

‘Soft’ abstraction provides a separate door exposing details

p.60

Tools for de-escalation

“We must guard against falling into the damaging rejection
of all machines as if they were works of the devil.”

It is not a contradiction that software can help de-escalate
itself.

Such software should engender much less future
programming

p.61

Tools for reconciliation
Constantly spawning: abstractly similar, concretely different

How can we reconcile them? Currently: at great cost.

A BA′

B

A′′

A Bglue code

edit or patch

glue coding

abstraction layer

p.62

McIlroy wanted interchangeable ‘at reasonable effort’

mpeg2_init();

fopen(fname, “rb”);

mpeg2_info(dec);

mpeg2_parse(dec);

mpeg2_buffer(dec, bgn, end)

fread(buf, size, n, f);

fwrite(buf, size, n, f);
fwrite(buf, size, n, f);
fwrite(buf, size, n, f);

mpeg2_close();

avcodec_init();
av_register_all();

av_open_input_file(out ic,
fname, fmt, buf_size, params);

av_find_stream_info(ic);

avcodec_open(c_ctx, c_obj);

avcodec_find_decoder(c_id);

fwrite(buf, size, n, f);
fwrite(buf, size, n, f);
fwrite(buf, size, n, f);

avcodec_close();

av_read_frame(pkt, ic);

avcodec_alloc_frame();

avcodec_decode_video(c_obj,
frame, out got_pic, buf, size);

av_close_input_file();

av_free(frame);

av_free_packet(pkt);

Open file and
decoder

Discover
streams

Read and
decode next

frame

Write decoded
output

Release per-
frame resources

Release
resources

libmpeg2 client control flow ffmpeg client control flow

Problems:

! non-1-to-1 mappings

! context-sensitive

! data, not just code

Need tools
which (semi-)automate
the reconciliation
of interface differences.

p.63

Tools for integration

Hardware (and other domains)

! chip invents its view on outside

! keeps components simple

! . . . and composable

Software:

! no equivalent

p.64

Tools for description
$ man 5 proc

...

/proc/[pid]/maps

A file containing the currently mapped memory

regions and their access permissions.

The format of the file is:

...

If ‘format’ were machine-readable, I wouldn’t have to write:

int nfields = sscanf(linebuf ,

”%lx−%lx %c%c%c%c %8x %2x:%2x %d %4095[\x01−\x09\x0b−\xff]\n”,

&entry buf−>first, &entry buf−>second, &entry buf−>r, &entry buf−>w,

&entry buf−>x, &entry buf−>p, &entry buf−>offset, &entry buf−>devmaj,

&entry buf−>devmin, &entry buf−>inode, entry buf−>rest);

. . . nor be fragile to changes in this format.

p.65

Culture for de-escalation
“Cultural change” is a problem, not a solution

We need a culture that values empowering individuals

. . . not providing warm bodies to feed the beast.

There’s a lot of wall to tear down. How?

p.66

An unsuccessful tactic: pleading

“With Project Oberon we have
demonstrated that flexible and powerful
systems can be built with substantially
fewer resources in less time than
usual. The plague of software explosion is
not a ‘law of nature’. It is avoidable, and it
is the software engineer’s task to curtail it.”

—Wirth, A Plea for Lean Software. Computer, 1995

No doubt deliberate effort can build simple software, but

! A new, parallel ecosystem won’t shift culture.

! It contributes to the escalation!

p.67

Probably also unsuccessful: embarrassing

p.68

Culture for de-escalation

Those of us who are teachers wield enormous power.

The norm is to teach the 1970s industrial view of software.

. . . without even acknowledging this as a culture!

Wanted: not just ‘shaping the future’. . .

. . . ‘shaping the shaping of the future’!

Programming languages, programming culture.

p.69

Teaching for conviviality

We mostly teach {internal, industrial} viewpoints

“a project”, “a client”, build “a system”

Performance and reliability seen as internal. . .

. . . not systemic effects

‘I optimised it and it runs faster!’

‘I proved it correct!’

p.70

The moral of Tetris:

“Development
is only sustainable if it makes
efforts to conserve complexity”

It is a game we will continue to lose.

Thank you for your indulgence.

p.71

Picture credits
Ken and Den – Peter Hamer (CC BY-SA)

Xerox Alto: PARC

stuffed Eeyore: ChipmunkRaccoonOz (CC BY-SA)

Illich – unknown (fair use)

Mac University Consortium logo: via folklore.org

Von Neumann – Alan Richards (via the IAS and CHM)

Ford assembly line – Literary Review (public domain)

traffic – public domain (US EPA)

McIlroy speaking – Brian Randell

McIlroy relaxing – Brian Randell

escalators at Lloyd’s – phogel (CC BY-SA)

Brian Kernighan – Ben Lowe (CC BY 2.0)

bicycle – own work

e-mail gateways – own work

hourglass – Xander89 (CC BY-SA 2.0)

rat’s nest – Lohray (CC BY-SA 3.0) [adapted from] p.72

	Introductions
	About me
	How did I get here?
	Apology for an impressionistic talk
	Reasons to be sceptical (part 3?)
	Ivan Illich (1926--2002)
	Criticism of institutions
		extquoteleft {}Bicycles for the mind	extquoteright {}
	Compilers are very advanced machines
	Why really?
	Functional languages are no better
	The blame game
	Another escalator: `let's make a new X'
	What just happened
	Monotonicity yes; reconciliation no
	Better ways: emph {possible}, but still not emph {done}
	Illich would sayldots {}
	Energy as inequity
	What can we emph {do} about all this?
	Yet more advanced technologyldots {}?
		extquoteleft {}Responsible self-limitation'
	Self-limitation 1: against performance-squeezing
	Self-limitation 2: if it stacks, it must federate
	Self-limitation 2: if it stacks, it must federate
	Self-limitation 2: if it stacks, it must federate
	Self-limitation 3: degradeable hiding
	Tools for de-escalation
	Tools for reconciliation
	McIlroy wanted interchangeable 	extquoteleft {}at reasonable effort'
	Tools for integration
	Tools for description
	Culture for de-escalation
	An unsuccessful tactic: pleading
	Probably also unsuccessful: embarrassing
	Culture for de-escalation
	Teaching for conviviality
	Picture credits

