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This introductory textbook for standard undergraduate courses in
thermodynamics has been completely rewritten to explore a greater number of
topics more clearly and concisely. Starting with an overview of important
quantum behaviors, the book teaches students how to calculate probabilities in
order to provide a firm foundation for later chapters. It then introduces the ideas
of “classical thermodynamics” — internal energy, interactions, entropy, and the
fundamental second law. These ideas are explored both in general and as they
are applied to more specific processes and interactions. The remainder of the
book deals with “statistical mechanics” — the study of small systems interacting
with huge reservoirs.

The changes in this Second Edition have been made as a result of more than 10
years of classroom testing and feedback from students. To help students review
the important concepts and test their newly gained knowledge, each topic ends
with a boxed summary of ideas and results. Every chapter has numerous
homework problems, covering a broad range of difficulties. Answers are given
to odd-numbered problems, and solutions to even-numbered problems are
available to instructors at www.cambridge.org/9780521865579.

KEITH STOWE is a professor of physics at California Polytechnic State
University and has worked there for 32 years. He has spent time at the
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Preface

Goals

The subject of thermodynamics was being developed on a postulatory basis long
before we understood the nature or behavior of the elementary constituents of
matter. As we became more familiar with these constituents, we were still slow to
place our trust in the “new” field of quantum mechanics, which was telling us that
their behaviors could be described correctly and accurately using probabilities
and statistics.

The influence of this historical sequence has lingered in our traditional ther-
modynamics curriculum. Until recently, we continued to teach an introductory
course using the more formal and abstract postulatory approach. Now, however,
there is a growing feeling that the statistical approach is more effective. It demon-
strates the firm physical and statistical basis of thermodynamics by showing how
the properties of macroscopic systems are direct consequences of the behaviors
of their elementary constituents. An added advantage of this approach is that it is
easily extended to include some statistical mechanics in an introductory course.
It gives the student a broader spectrum of skills as well as a better understanding
of the physical bases.

This book is intended for use in the standard junior or senior undergraduate
course in thermodynamics, and it assumes no previous knowledge of the subject.
I try to introduce the subject as simply and succinctly as possible, with enough
applications to indicate the relevance of the results but not so many as might risk
losing the student in details. There are many advanced books of high quality that
can help the interested student probe more deeply into the subject and its more
specialized applications.

I try to tie everything straight to fundamental concepts, and I avoid “slick
tricks” and the “pyramiding” of results. I remain focused on the basic ideas and
physical causes, because I believe this will help students better understand, retain,
and apply the tools and results that we develop.

Active learning

I think that real learning must be an active process. It is important for the student
to apply new knowledge to specific problems as soon as possible. This should be a
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daily activity, and problems should be attempted while the knowledge is still fresh.
A routine of frequent, timely, and short problem-solving sessions is far superior
toafewinfrequentproblem=solvingmarathons. For this reason, at the end of each
chapter the text includes a very large number of suggested homework problems,
which are organized by section. Solutions to the odd-numbered problems are at
the end of the book for instant feedback.

Active learning can also be encouraged by streamlining the more passive
components. The sooner the student understands the text material, the sooner he
or she can apply it. For this reason, I have put the topics in what I believe to be the
most learning-efficient order, and I explain the concepts as simply and clearly as
possible. Summaries are frequent and are included within the chapters wherever
I think would be helpful to a first-time student wrestling with the concepts. They
are also shaded for easy identification. Hopefully, this streamlining of the passive
aspects might allow more time for active problem solving.

Changes in the second edition

The entire book has been rewritten. My primary objective for the second edition
has been to explore more topics, more thoroughly, more clearly, and with fewer
words. To accomplish this [ have written more concisely, combined related topics,
and reduced repetition. The result is a modest reduction in text, in spite of the
broadened coverage of topics.

In addition I wanted to correct what I considered to be the two biggest problems
with the first edition: the large number of uncorrected typos and an incomplete
description of the chemical potential. A further objective was to increase the
number and quality of homework problems that are available for the instructor
or student to select from. These range in difficulty from warm-ups to challenges.
In this edition the number of homework problems has nearly doubled, averaging
around 40 per chapter. In addition, solutions (and occasional hints) to the odd-
numbered problems are given at the back of the book. My experience with students
at this level has been that solutions give quick and efficient feedback, encouraging
those who are doing things correctly and helping to guide those who stumble.

The following list expands upon the more important new initiatives and fea-
tures in this edition in order of their appearance, with the chapters and sections
indicated in parentheses.

* Fluctuations in observables, such as energy, temperature, volume, number of particles,
etc. (Sections 3A, 3C, 7C, 9B, 19A)

* Improved discussion and illustrations of the chemical potential (Sections 5C, 8A, 9E,
14A)

® The explicit dependence of the number of accessible states on the system’s internal
energy, volume, and number of particles (Chapter 6)

* Behaviors near absolute zero (Sections 9H, 24A, 24B)
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* Entropy and the third law (Section 8D)

* A new chapter on interdependence among thermodynamic variables (Chapter 11)

® Thermal conduction, and the heat equation (Section 12E)

* A more extensive treatment of engines, including performance analysis (Section 13F),
model cycles, a description of several of the more common internal combustion engines
(Section 13H), and vapor cycles (Section 131)

* A new chapter on diffusive interactions, including such topics as diffusive equilibrium,
osmosis, chemical equilibrium, and phase transitions (Chapter 14)

® Properties of solutions (colligative properties, vapor pressure, 0sSmosis, etc.)
(Section 14B)

® Chemical equilibrium and reaction rates (Section 14C)

* A more thorough treatment of phase transitions (Section 14D)

® Binary mixtures, solubility gap, phase transitions in minerals and alloys, etc.
(Section 14E)

* Conserved properties (Section 16E)

¢ Calculating the chemical potential for quantum systems (Section 19E)

® Chemical potential and internal energy for quantum gases (Section 20D)

¢ Entropy and adiabatic processes in photon gases (Section 21E)

® Thermal noise (Section 21F)

¢ Electrical properties of materials, including band structure, conductors, intrinsic and
doped semiconductors, and p—n junctions (Chapter 23)

¢ Update of recent advances in cooling methods (Section 24A)

¢ Update of recent advances in Bose-Einstein condensation (Section 24B)

¢ Stellar collapse (Section 24C)

Organization

The book has been organized to give the instructor as much flexibility as possible.
Some early chapters are essential for the understanding of later topics. Many
chapters, however, could be skipped at a first reading or their order rearranged as
the instructor sees fit. To help the instructor or student with these choices, I give
the following summary followed by more detailed information.

Summary of organization

Partl Introduction
Chapter 1  essential if the students have not yet had a course in quantum mechan-
ics. Summarizes important quantum effects

Part I Small systems
Chapter 2 and Chapter 3  insightful, but not needed for succeeding chapters
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Part III Energy and the first law
Chapter 4, Chapter 5 and Chapter 6 essential

Part IV States and the second law
Chapter 6, Chapter 7 and Chapter 8 essential

Part V. Constraints

Chapter 9  essential

Chapter 10, Chapter 11, Chapter 12, Chapter 13 and Chapter 14 any order, and
any can be skipped

Part VI Classical statistics
Chapter 15 essential
Chapter 16, Chapter 17 and Chapter 18 any order, and any can be skipped

Part VII Quantum statistics

Chapter 19, Chapter 20 A, B essential

Chapter 21, Chapter 22, Chapter 23 and Chapter 24 any order, and any can be
skipped

More details

Part | - Introduction Chapter 1 is included for the benefit of those students
who have not yet had a course in quantum mechanics. It summarizes important
quantum effects that are used in examples throughout the book.

Part Il - Small systems Chapters 2 and 3 study systems with only a few ele-
ments. By studying small systems first the student develops both a better appre-
ciation and also a better understanding of the powerful tools that we will need for
large systems in subsequent chapters. However, these two chapters are not essen-
tial for understanding the rest of the book and may be skipped if the instructor
wishes.

Part Il - Energy and the first law Chapters 4 and 5 are intended to give the
student an intuitive physical picture of what goes on within interacting systems on
a microscopic scale. Although the mathematical rigor comes later, this physical
understanding is essential to the rest of the book so these two chapters should not
be skipped.

Part IV - States and the second law Chapters 6, 7, and 8 are the most impor-
tant in the book. They develop the statistical basis for much of thermodynamics.

Part V - Constraints Chapter 9 derives the universal consequences of the fun-
damental ideas of the preceding three chapters. So this chapter shows why things
must behave as they do, and why our “common sense” is what it is. Chapters 10-14
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all describe the application of constraints to more specific systems. None of these
topics is essential, although some models in Chapter 10 would be helpful in under-
standing examples used later in the book; if Chapters 11 and 12 are covered, they
should be done in numerical order. Topics in these five chapters include equations
of state and models, the choice and manipulation of variables, isobaric, isother-
mal, and adiabatic processes, reversibility, important nonequilibrium processes,
engines, diffusion, solutions, chemical equilibrium, phase transitions, and binary
mixtures.

Part VI - Classical statistics Chapter 15 develops the basis for both classi-
cal “Boltzmann” and quantum statistics. So even if you go straight to quantum
statistics, this chapter should be covered first. Chapters 16, 17, and 18 are appli-
cations of classical statistics, each of which has no impact on any other material
in the book. So they may be skipped or presented in any order with no effect on
subsequent material.

Part VIl - Quantum statistics Chapter 19 introduces quantum statistics, and
the first two sections of Chapter 20 introduce quantum gases. These provide the
underpinnings for the subsequent chapters and therefore must be covered first.
The remaining four (Chapters 21-24 ) are each independent and may be skipped
or presented in any order, as the instructor chooses.
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List of constants, conversions, and prefixes

Constants

acceleration of gravity
Avogadro’s number
Boltzmann’s constant
Coulomb constant
elementary unit of charge
gas constant

gravitational constant
magnetons
Bohr magneton
nuclear magneton
masses
atomic mass unit
electron mass
neutron mass
proton mass
Planck’s constant

speed of light in vacuum
Stefan-Boltzmann constant

Conversions

1A=10"""m

1 liter =103 m?3

1 atm = 1.013 x 10° Pa
logiox = 0.4343 In x

eX = 100.4343)(

1eV=1602x10""J

g = 9.807 m/s?
Na = 6.022 x 10% particles/mole
k=1.381x 1072 J/K = 8.617 x 1075 eV/K
1/4mey = 8.988 x 10° kg m3/(s2 C?)
e=1.602x10"1°C
R = Nak =8.315 J/(K mole)

= 0.08206 liter atm/(K mole)
G = 6.673 x 10~ m3/(kg s?)

ug = 9.274 x 10724 J/T =5.788 x 10°° eV/T
un = 5.051 x 10727 J/T =3.152 x 1078 eV/T

u=1.661x 10~%7 kg

me = 9.109 x 10731 kg

mp = 1.675 x 10727 kg

my = 1.673 x 10-% kg

h=6.626 x 1073* J s =4.136 x 10""° eV s

h=h/2r = 1.055x 1034 Js=6.582x 1076 eVs

c=2.998 x 108 m/s
o =5.671 x 1078 W/(m?2 K*)

1cal =4.184 J = 0.04129 liter atm

1T=1Wb/m2=10*G

temperature (K) = temperature (°C) + 273.15 K
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Prefixes

tera T 102
giga G 10°
mega M 108
kilo k 108
centi c 102
milli m 10-3
micro m 10-6
nano n 10-°
pico p 10-12
femto f 10-1°
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Imagine you could shrink into the atomic world. On this small scale, motion is
violent and chaotic. Atoms shake and dance wildly, and each carries an electron
cloud that is a blur of motion. By contrast, the behavior of a very large number
of atoms, such as a baseball or planet, is quite sedate. Their positions, motions,
and properties change continuously yet predictably. How can the behavior of
macroscopic systems be so predictable if their microscopic constituents are so
unruly? Shouldn’t there be some connection between the two?

Indeed, the behaviors of the individual microscopic elements are reflected in
the properties of the system as a whole. In this course, we will learn how to make
the translation, either way, between microscopic behaviors and macroscopic
properties.

A The translation between microscopic and
macroscopic behavior

A.1 The statistical tools

If you guess whether a flipped coin will land heads or tails, you have a 50% chance
of being wrong. But for a very large number of flipped coins, you may safely
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Figure 1.1 (a) If you know the probabilities for one single coin flip then you can
predict the heads-tails distribution for a large number of them. Conversely, by
observing the heads-tails distribution for a large number of flipped coins, you can
infer the probabilities for any one of them. (b) What is the probability that a rolled
dice will land with six dots up? If a large number of dice were rolled, roughly what
fraction of them would land with six dots up?

assume that nearly half will land heads. Even though the individual elements are
unruly, the behavior of a large system is predictable (Figure 1.1).

Your prediction could go the other way, too. From the behavior of the entire
system, you might predict probabilities for the individual elements. For example,
if you find that one sixth of a large number of rolled dice show sixes (i.e., six
dots up), you can correctly infer that the probability for any one die to show
a six is 1/6 (Figure 1.1b). When a system is composed of a large number of
identical elements, you can use the observed behavior of an individual element
to predict the properties of the whole system, or conversely, you can use the
observed properties of the entire system to deduce the probable behaviors of the
individual elements.

The study of this two-way translation between the behavior of the individ-
ual elements and the properties of the system as a whole is called statistical
mechanics. One of the goals of this book is to give you the tools for making this
translation, in either direction, for whatever system you wish.

A.2 Thermodynamics

The industrial revolution and the attendant proliferation in the use of engines gave
a huge impetus to the study of thermodynamics, a name that obviously reflects
the early interest in turning heat into motion. The study now encompasses all
forms of work and energy and includes probing the relationships among system
parameters, such as how pressure influences temperature, how energy is converted
from one form to another, etc.
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Considerable early progress was made with little or no knowledge of the
atomic nature of matter. Now that we understand matter’s elementary constituents
better, the tools of thermodynamics and statistical mechanics help us improve
our understanding of matter and macroscopic systems at a more fundamental
level.

Summary of Section A

If a system is composed of many identical elements, the probable behaviors of an
individual element may be used to predict the properties of the system as a whole or,
conversely, the properties of the system as a whole may be used to infer the probable
behaviors of an individual element. The study of the statistical techniques used to
make this two-way translation between the microscopic and macroscopic behaviors
of physical systems is called statistical mechanics. The study of interrelationships
among macroscopic properties is called thermodynamics. Using statistical tools, we
can relate the properties of a macroscopic system to the behaviors of its individual
elements, and in this way obtain a better understanding of both.

B Quantum effects

When a large number of coins are flipped, it is easy to predict that nearly half will
land heads up. With a little mathematical sophistication, you might even be able
to calculate typical fluctuations or probabilities for various possible outcomes.
You could do the same for a system of many rolled dice.

Like coins and dice, the microscopic constituents of physical systems also have
only certain discrete states available to them, and we can analyze their behaviors
with the same tools that we use for systems of coins or dice. We now describe a
few of these important “quantized” properties, because we will be using them as
examples in this course. You may wish to refer back to them when you arrive at
the appropriate point later in the book.

B.1 Electrical charge

For reasons we do not yet understand, nature has provided electrical charge in
fundamental units of 1.6 x 107! coulombs, a unit that we identify by e:

e=1.602 x 107" C.

We sometimes use collisions to study the small-scale structure of subatomic
particles. No matter how powerful the collision or how many tiny fragments are
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produced, the charge of each is always found to be an integral number of units of
the fundamental charge, e.!

B.2 Wave nature of particles

In the nineteenth century it was thought that energy could go from one point to
another by either of two distinct processes: the transport of matter or the propaga-
tion of waves. Until the 1860s, we thought waves could only propagate through
matter. Then the work of James Clerk Maxwell (1831-79) demonstrated that
electromagnetic radiation was also a type of wave, with oscillations in electric
and magnetic fields rather than in matter. These waves traveled at extremely high
speeds and through empty space. Experiments with appropriate diffraction grat-
ings showed that electromagnetic radiation displays the same diffractive behavior
as waves that travel in material media, such as sound or ocean waves.

Then in the early twentieth century, experiments began to blur the distinction
between the two forms of energy transport. The photoelectric effect and Compton
scattering demonstrated that electromagnetic “waves” could behave like “parti-
cles.” And other experiments showed that “particles” could behave like “waves:”
when directed onto appropriate diffraction gratings, beams of electrons or other
subatomic particles yielded diffraction patterns, just as waves do.

The wavelength A for these particle—waves was found to be inversely propor-
tional to the particle’s momentum p; it is governed by the same equation used for
electromagnetic waves in the photoelectric effect and Compton scattering,

r=— (h = 6.626 x 107**Js). (1.1)
P

Equivalently, we can write a particle’s momentum in terms of its wave number,
k=2m/A.
p=ﬁ=i2—”=hk (i = h/2m =1.055 x 107347 s). (1.2)
A 2w A
The constant of proportionality, 4, is Planck’s constant, and when divided by 27
it is called “h-bar.”

We do not know why particles behave as waves any more than we know
whyrelectricalichargercomesrinifundamentalrunitsie. But they do, and we can
set up differential “wave equations” to describe any system of particles we like.
The solutions to these equations are called “wave functions,” and they give us
the probabilities for various behaviors of the system. In the next few pages we
describe some of the important consequences.

! For quarks the fundamental unit would be e/3. But they bind together to form the observed ele-
mentary particles (protons, neutrons, mesons, etc.) only in ways such that the total electrical charge
is in units of e.
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Figure 1.2 The
superposition of the sine
waves below yields the
sawtooth wave above.

B.3 Uncertainty principle

Any function of the variable x on (—o0, 00) can be written as a superposition
of sinerwavercomponentsiof variousswavelengths (Figure 1.2). These sine wave
components may be either of the form sin kx and cos kx, or ¢’**, and the technique
used to determine the contributions of each component to any function, f(x), is
called Fourier analysis. In mathematical terms, any function f(x) on (—oo, +00)
can be written as

fx)= /00 [a(k)sinkx + b(k)coskx]dk
0
or
s = [ cnetar,

where the coefficients a(k), b(k), c(k) are the “amplitudes” of the respective
components.

We now investigate the behavior of a particle’s wave function in the x dimen-
sion. Although a particle exists in a certain region of space, the sine wave compo-
nents, e.g., sin kx, extend forever. Consequently, if we are to construct a localized
function from the superposition of infinitely long sine waves, the superposition
must be such that the various components cancel each other out everywhere
except for the appropriate small region (Figure 1.3).

To accomplish this cancellation requires an infinite number of sine wave com-
ponents, but the bulk of the contributions come from those whose wave numbers
k lie within some small region Ak. As we do the Fourier analysis of various
functions, we find that the more localized the function is in x, the broader is the
characteristic spread in the wave numbers £ of the sine wave components.
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cancellation \ Ax \ cancellation ———

Figure 1.3 (Top) Superposition of two sine waves of nearly the same wavelengths
(the broken and the dotted curves), resulting in beats (the solid curve). The closer
the two wavelengths, the longer the beats. There is an inverse relationship. (Bottom)
In a particle’s wave function, the sine wave components must cancel each other out
everywhere except for the appropriate localized region of space, Ax. To make a
waveform that does not repeat requires the superposition of an infinite number of
sine waves, but the same relationship applies: the spread in wavelengths is
inversely related to the length of the beat. (The cancellation of the waves farther out
requires the inclusion of waves with a smaller spread in wavelengths. So the wave
numbers of these additional components are closer together and therefore lie within
the range Ak of the “primary” wave number.)

In fact, the two are inversely related. If Ax represents the characteristic width of
the particle’s wave function and Ak the characteristic spread in the components’
wave numbers, then

AxAk = 2.

If we multiply both sides by 7% and use the relationship 1.2 between wave number
and momentum for a particle, this becomes the uncertainty principle,

AxAp, = h. (1.3)

This surprising result? tells us that because particles behave like waves, they
cannot be pinpointed. We cannot know exactly either where they are or where

2 The uncertainty principle is written in many closely related forms. Many authors replace the equals
sign by >, to indicate that the actual measurement may be less precise than the mathematics allows.
Furthermore, the spread is a matter of probabilities, so its size reflects your confidence level (i.e.,
50%, 75%, etc.). We use the conservative value 4 because it coincides with Nature’s choice for the
size of a quantum state, as originally discovered in the study of blackbody radiation.
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Figure 1.4 (a) According to classical physics, a particle could be located as a point
in (x, px) space. That is, both its position and momentum could be specified exactly.
In modern physics, however, the best we can do is to identify a particle as being
somewhere within a box of area AxAp, = h. (b) Because of the wave nature of
particles, if we try to specify better the location of a particle in x-space, we lose
accuracy in the determination of its momentum py. The area AxAp, of the minimal
quantum box does not change.

they are going. If we try to locate a particle’s coordinates in the two-dimensional
space (x, py), we will not be able to specify either coordinate exactly. Instead, the
best we can do is to say that its coordinates are somewhere within a rectangle of
area AxAp, = h (Figure 1.4a). If we try to specify its position in x better then our
uncertainty in p, will increase, and vice versa; the area of the rectangle AxAp,
remains the same (Figure 1.4b).

B.4 Quantum states and phase space

The position (x, y, z) and momentum (py, p,, p-) specify the coordinates of a
particle in a six-dimensional “phase space.” Although the uncertainty relation
1.3 applies to the two-dimensional phase space (x, p,), identical relationships
apply in the y and z dimensions. And by converting to angular measure, we get
the same uncertainty principle for angular position and angular momentum. Thus
we obtain

AyAp, =h, AzAp,=h, AOAL=h. (1.3,1.3",1.3")
We can multiply the three relationships 1.3, 1.3/, 1.3” together to get
AxAyAzAp Ap,Ap, = K3,

which indicates that we cannot identify a particle’s position and momentum coor-
dinates in this six-dimensional phase space precisely. Rather, the best we can do
is to say that they lie somewhere within a six-dimensional quantum “box” or
“state” of volume AxAyAzAp, Ap, Ap, = h?.
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Figure 1.5 The total
number of quantum
states accessible to a
particle whose
momentum is confined to
the range [ px] and whose
position is confined to the
range [x] is equal to the
total accessible area in
phase space divided by
the area of a single
quantum state, [XI[ pxl/ h.
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Px
h = area of one state

[x][Px]

number of states = 7

[Px]

[x]

Consider a particle moving in the x dimension whose position and momentum
coordinates lie within the ranges [x] and [p,], respectively (Figure 1.5). The
number of different quantum states that are available to this particle is equal to
the total accessible area in two-dimensional phase space, [x][ py ], divided by the
area of a single quantum state, AxAp, = h. That is,

. total area X
number of accessible states = = ip.] .
area of one state h
Extending this to motion in three dimensions we have
. V.V
number of accessible states = ——2, (1.4)

h3

where V. and V), are the accessible volumes in coordinate and momentum space,
respectively. In particular, the number of quantum states available in the six-
dimensional volume element d3#d3 p is given by
&Erdp  dxdydzdp,dp,dp.
o A3 '
One important consequence of the relations 1.4 and 1.5 is that the number of
quantum states included in any interval of any coordinate is directly proportional
to the length of that interval. If £ represents any of the phase-space coordinates
(i.e., the position and momentum coordinates) then

number of accessible states =

(1.5)

(1.6)

number of quantum states in the interval d§ o< d§.

B.5 Density of states

Many calculations require a summation over all states accessible to a particle.
Since quantum states normally occupy only a very small region of phase space
and are very close together, it is often convenient to replace discrete summation
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by continuous integration, using the result 1.5:

3..13
3 - / drdp. (1.7)
states

Sometimes the most difficult part of doing this integral is trying to determine
the limits of integration. Interactions among particles may restrict the region of
phase space accessible to them.

In ideal gases, particles have access to the entire container volume. Changing
the sum over states to an integral over the volume and all momentum directions
(i.e., the angles in d*p = p2dp sin @ df d¢) gives

& rd3 _AxV
Z / = / p2 dp.
states

We can also write this as a distribution of states in the particle energy, €. Energy
and momentum are related by ¢ = p?/2m for massive nonrelativistic particles and
by ¢ = pc (c is the speed of travel) for massless particles such as electromagnetic
waves (photons) or vibrations in solids (phonons). For these “gases” the sum over
states becomes (homework)

2V (2m)>/?

Z /- drdip ﬂ(hi}m) / Je de (nonrelativistic),
4V

states i f g’de (massless or relativistic)
h3c?

It is customary to write the summation over phase space as an integral over a

function g(¢):
&drd’p
> - [t = [ (19)

states

where g(¢) is the number of accessible states per unit energy and is therefore
called the “density of states.” From the above case of an ideal gas, we see that
the density of states for a system of noninteracting particles is given by

27V (2m)*/?
g(e) = 7-[(}143m)\/§ (nonrelativistic gas)
4nV . (1-9)
g(e) = h3—38 (massless or relativistic gas)
c

For other systems, however, g(¢) may be quite different (Figure 1.6). The density
of states contains within it the constraints placed on the particles by their mutual
interactions.

B.6 Angular momentum

Another surprising result of quantum mechanics is that the angular momentum
of a particle or a system of particles can only have certain values; furthermore, a
fundamental constraint (the uncertainty principle) prohibits us from knowing its

11
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Figure 1.6 The solid line
shows the actual density
of states for the atomic
vibrations in a mole of
sodium metal. The broken
line shows the density of
states for the motion of
the sodium atoms viewed
as an ideal gas of
massless phonons
occupying the same
volume (equation 1.9).
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exact orientation in space. In fact, we can know only one of its three components
at a time. It is customary to call the direction of the known component the
z direction.

The angular momentum of the particles of a system comes from either or both
of two sources. They may be traveling in an orbit and may have intrinsic spin as
well. The total angular momentum J of a particle is the vector sum of that due to
its orbit, L, and that due to its intrinsic spin, S:

J=L+S.
The orbital angular momentum of a particle must have magnitude
IL| =/I( + 1),

where the integer / is called the “angular momentum quantum number.” Its ori-
entation is also restricted; the component along any chosen axis (usually called
the z-axis) must be an integral multiple of 7% (Figure 1.7):

1=0,1,2,..., (1.10)

L.=0L7% L =0%1,42, ... =+l (1.11)
For example, if the particle is in an orbit with / = 1 then the total angular
momentum has magnitude /2%, and its z-component can have any of the

values (—1, 0, 1) 7.
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Similar constraints apply to the intrinsic spin angular momentum S of a par-
ticle, for which the magnitude and z-component are given by

[S| =/s(s + 1) 7, (1.12)

S, =s,7, s, =—8,—s+1,...,+s, (1.13)

but with one major difference. The spin quantum number s may be either integer
or half integer. Those particles with integer spins are called “bosons,” and those
with half-integer spins are called “fermions.”

For later reference, we summarize the constraints on the z-component of angu-
lar momentum as follows:

L.=(0,+1,42,..., +)% (1.14)
and

S, =(0,£1,£2,...,£5)7% (bosons),
S, =(£1/2,%3/2,...,%+s)% (fermions).

We label particles by the value of their spin quantum number, s. For example, a
spin-1 particle has s = 1. Its z-component can have the values s, = (—1, 0, 1)%.
A spin-1/2 particle can have z-component (—1/2, +1/2)7%. We often say simply
that it is “spin down” or “spin up,” respectively. Protons, neutrons, and electrons
are all spin-1/2 particles.

The quantum mechanical origin of these strange restrictions lies in the require-
ment that if either the particle or the laboratory is turned through a complete
rotation around any axis, the observed situation will be the same as before the
rotation. Because observables are related to the square of the wave function, the

13

Figure 1.7 lllustration of
the quantization of one
component (here the
z-component) of angular
momentum, which can
take the values

(0, %£1,£2,...)h. The first
illustration is for an /=2
orbit. Also shown are the
possible spin angular
momentum orientations
for a spin-1 boson, and
for a spin-1/2 fermion.
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Figure 1.8 A magnetic field B is produced by circulating electrical charges. (Left) An
orbiting electrical charge is a current loop. The magnetic moment of such a loop is
equal to the product of the electrical current times the area of the loop. (Right) A
charged particle spinning on its axis is also a current loop, and therefore it also
produces a magnetic field. (The figures show positive charges.)

wave function must turn into either plus or minus itself under a rotation by 27
radians. Its sign remains unchanged if the angular momentum around the rotation
axis is an integer multiple of 7 (i.e., for bosons) but changes if the angular momen-
tum around the rotation axis is a half-integer multiple of % (i.e., for fermions).
Because of this difference in sign under 27 rotations, bosons and fermions each
obey a different type of quantum statistics, as we will see in a later chapter.

B.7 Magnetic moments

Moving charges create magnetic fields (Figure 1.8). For a particle in orbit, such
as an electron orbiting the atomic nucleus, the magnetic moment p is directly
proportional to its angular momentum L (see Appendix A):

)
=|— I_‘7
H (Zm
where ¢ is the charge of the particle and m is its mass. Since angular momenta
are quantized, so are the magnetic moments:
e = (2i> L.,  where L.=(0,%l,42, ... £D)% (1.15)
m
For particle spin, the relationship between the magnetic moment and the spin
angular momentum S is similar:
e

h=g(5-)s and  po=g(5-)s. (1.16)

where e is the fundamental unit of charge and g is called the “gyromagnetic ratio.”
By comparing formulas 1.15 and 1.16, you might think that the factor g is
simply the charge of the particle in units of e. But the derivation of equation 1.15
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(Appendix A) assumes that the mass and charge have the same distribution, which
is not true for the intrinsic angular momentum (i.e., spin) of quark-composite
particles such as nucleons. Furthermore, in the area of particle spins our classical
expectations are wrong anyhow. Measurements reveal that for particle spins:

g =-2.00 (electron),
g =+5.58 (proton),
g=-3.82 (neutron).

As equations 1.15 and 1.16 indicate, the magnetic moment of a particle is
inversely proportional to its mass. Nucleons are nearly 2000 times more massive
than electrons, so their contribution to atomic magnetism is normally nearly 2000
times smaller.

The interaction energy of a magnetic moment, p with an external magnetic
field B is U = —p - B. If we define the z direction to be that of the external
magnetic field, then

U=—pu.B. (1.17)

In general there are two contributions to the magnetic moment of a particle, one
from its orbit and one from its spin. Both are quantized, so the interaction energy
U can have only certain discrete values.

B.8 Bound states

Whenever a particle is confined, it may have only certain discrete energies. With
the particle bouncing back and forth across the confinement, the superposition of
waves going in both directions results in standing waves. Like waves on a string
(Figure 1.9), standing waves of only certain wavelengths fit — hence only certain
momenta, (1.2), and therefore certain energies, are allowed.

The particular spectrum of allowed energies depends on the type of con-
finement. Those allowed by a Coulomb potential are different from those of a
harmonic oscillator or those of a particle held inside a box with rigid walls, for
example. Narrower confinements require shorter wavelengths, which correspond
to larger momenta, higher kinetic energies, and greater energy spacing between
neighboring states.

The harmonic oscillator confinement is prominent in both the macroscopic and
microscopic worlds. If you try to displace any system away from equilibrium,
there will be a restoring force that tries to bring it back. (If not, it wouldn’t have
been in equilibrium in the first place!) For sufficiently small displacements, the
restoring force is proportional to the displacement and in the opposite direction.
That is,

F = —«kx,

15
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2 7
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Figure 1.9 Particles behave as waves. A particle in a rigid confinement cannot
leave, but must move back and forth across it. This generates standing waves,
which must vanish at the boundaries because the particle cannot go beyond. Only
certain wavelengths fit. Here are shown the four longest allowed wavelengths,
corresponding to the four lowest momenta (p = h/1), and hence the four lowest
kinetic energies (p?/2m).

where x is the displacement and « is the constant of proportionality, sometimes
called the “elastic” or “spring” constant. The corresponding potential energy is

Ux) = Uy + skx’

where U is a constant.
When we solve the wave equation for the spectrum of energies (relative to Up)
allowed by this harmonic oscillator potential, we find that they are given by

E=(n+3) ko, n=0,12... (1.18)
for a one-dimensional harmonic oscillator, and
E=(n+3)ho, n=0,12... (1.19)

for a three-dimensional harmonic oscillator, where the angular frequency is given
by

Notice that the lowest possible energy (with n = 0) is not zero. In fact, no
particle may ever have exactly zero kinetic energy, because then its momen-
tum would be zero and its momentum would be fixed. That would violate the
uncertainty principle, which dictates that we can never know the momentum and
the position exactly. Consequently, even at absolute zero temperature, a particle
must still be moving. This motion is sometimes called the “zero-point energy” or
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“Zitterbewegung.” We know neither in which direction it is going nor where it is
in the confinement, so it still obeys the uncertainty principle.

C Description of a state

We began this chapter with examples involving coins and dice. Each of these could
have only a limited number of configurations or states: a coin has two and a die has
six. Then we learned that important characteristics of the microscopic components
of real physical systems also have discrete values, such as the electrical charge,
the angular momentum, the magnetic moment and magnetic interaction energy,
or the energy in a confinement.

In any particular problem there will be only one or two properties of the element
of the system that would be relevant, so we can ignore all others. When dealing
with flipped coins, for example, we wish to know their heads—tails configurations
only. Their colors, compositions, designs, interactions with the table, etc. are
irrelevant. Likewise, in studying the magnetic properties of a material we may
wish to know the magnetic moment of the outer electrons only, and nothing else.
Or, when studying a material’s thermal properties, we may wish to know the
vibrational states of the atoms and nothing else. Consequently, when we describe
the “state” of a system, we will only give the properties that are relevant for the
problem we are considering.

The state of a system is determined by the state of each element. For example,
a system of three coins is identified by the heads—tails configuration of each. And
the spin state of three distinguishable particles is identified by stating the spin
orientation of each. When the system becomes large (10 electrons, for example)
the description of the system becomes hopelessly long. Fortunately, we can use
statistical methods to describe these large systems; the larger the systems, the
simpler and more useful these descriptions will be. In Chapter 2, we begin with
small systems and then proceed to larger systems, to illustrate the development
and utility of some of these statistical techniques.

Summary of Sections B and C

Many important properties of the microscopic elements of a system are quantized.
One is electrical charge. Others are due to the wave nature of particles and include
their position and momentum coordinates, angular momentum, magnetic moment,
magnetic interaction energies, and the energies of any particles confined to a
restricted region of space.

‘We normally restrict our description of the state of an element of a system to
those few properties in which we are interested. The state of a system is determined
by specifying the state of each of its elements. This is done statistically for large
systems.

17
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Problems

The answers to the first three problems are given here. After that, you will find
the answers to the odd-numbered problems at the back of the book.

Section A

1. You flip one million identical coins and find that six of them end up standing
on edge. What is the probability that the next flipped coin will end up on edge?
(Answer: 6 x 107%)

2. (a) If you deal one card from a well-shuffled deck of 52 playing cards, what
is the probability that the card will be an ace? (Answer: 4/52, since there
are four aces in a deck.)

(b) Suppose that you deal one card from each of one million well-shuffled
decks of 52 playing cards each. How many of the dealt cards would be
aces? (Answer: 7.7 x 10%)

3. Flip a coin twice. What percentage of the time did it land heads? Repeat this a
few times, each time recording the percentage of the two flips that were heads.
Now flip the coin 20 times, and record what percentage of the 20 flips were
heads. Repeat. For which case (2 flips, or 20 flips) is the outcome generally
closer to a 50-50 heads-tails distribution? If you flip 20 coins, why would it
be unwise to bet on exactly 10 landing heads?

4. A certain puddle of water has 10%° identical water molecules. As the temper-
ature of this puddle falls to 0°C and below, the puddle freezes, resulting in
a considerable change in the thermodynamic properties of this system. What
do you suppose happens to the individual molecules to cause this remarkable
change?

5. List eight systems that have large numbers of identical elements.

6. In a certain city, there are 2 000 000 people and 600 000 autos. The average
auto is driven 30 miles each day. If the average driver drives about 80 000 miles
per accident, roughly how many auto accidents are there per day in this city?

7. Suppose that you flip a coin three times, and each time it lands tails. Many a
gambler would be willing to bet better than even odds (e.g., 2to 1, or 3 to 1)
that the next time it will land heads, citing the “law of averages.” Are these
gamblers wise or foolish? Explain.

Section B
8. The density of liquid water is 10° kg/m>. There are 6.022 x 10?* molecules
in 18 grams of water. With this information, estimate the width of a molecule.
Of an atom. Of an atomic nucleus, which is about 5 x 10* times narrower
than an atom.
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After combing your hair, you find your comb has a net charge of —1.92 x
10~'® C. How many extra electrons are on your comb?

What is the wavelength associated with an electron moving at a speed of
107 m/s? What is the wavelength associated with a proton moving at this
speed? What is the wavelength of a 70 kg sprinter running at 10 m/s?

For waves incident on a diffraction grating, the diffraction formula is given

by 2d sin® = mA, where m is an integer, d is the grating spacing, and 0 is

the angle for constructive interference, measured from the direction of the
incoming waves. Suppose that we use the arrangements of atoms in a crystal
for our grating.

(a) For first-order diffraction (m = 1) and a crystal lattice spacing of 0.2 nm,
what wavelength would have constructive interference at an angle of 30°
with the incoming direction?

(b) What is the momentum of a particle with this wavelength?

(c) At what speed would an electron be traveling in order to have this
momentum? A proton?

(d) What would be the energy in eV of an electron with this momentum? Of
aproton? (1eV = 1.6 x 1071917]))

(e) What would be the energy in eV of an x-ray of this wavelength? (For an
electromagnetic wave E = pc, where c is the speed of light.)

Consider the superposition of two waves with wavelengths A; = 0.020 nm
and A, = 0.021 nm, which produces beats (i.e., alternate regions of construc-
tive and destructive interference).

(a) What is the width of a beat?

(b) What is the difference between the two wave numbers, Ak =k, — k;?
(c) What is the product AkAx, where Ax is the width of a beat?

(d) Repeat the above for the two wavelengths A} = 5 m, A, = 5.2 m.

Suppose we know that a certain electron is somewhere in an atom, so that
our uncertainty in the position of this electron is the width of the atom,
Ax = 0.1 nm. What is our minimum uncertainty in the x-component of its
momentum? In its x-component of velocity?

Consider a particle moving in one dimension. Estimate the number of quan-

tum states available to that particle if:

(a) Itis confined to aregion 10~ m long and its momentum must lie between
—107%*and +107>* kgm/s;

(b) it is an electron confined a region 10~°m long with speed less than
107 m/s (i.e., the velocity is between +107 and —107 m/s).

Consider a proton moving in three dimensions, whose motion is confined to
be within a nucleus (a sphere of radius 2 x 10~!°> m) and whose momentum
must have magnitude less than py = 3 x 107! kg m/s. Roughly how many

19
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16.

17.

18.

19.

20.

21.

22.

quantum states are available to this proton? (Hint: The volume of a sphere of
radius pg is (4/3)7p3.)

A particle is confined within a rectangular box with dimensions 1 ¢cm by
1 cm by 2 cm. In addition, it is known that the magnitude of its momen-
tum is less than 3g cm/s. How many states are available to it? (Hint: In this
problem, the available volume in momentum space is a sphere of radius
3gcm/s.)

In this problem you will estimate the lower limit to the kinetic energy of a

nucleon in a nucleus. A typical nucleus is 8 x 1073 m across.

(a) What is the longest wavelength of a standing wave that fits inside this
confinement?

(b) What is the energy of a proton of this wavelength in MeV? (1 MeV =
1.6 x 10713 joules.)

(a) Using the technique of the problem above, estimate the typical kinetic
energies of electrons in an atom. The atomic electron cloud is typically
1079 m across. Express your answer in eV.

(b) Roughly, what is our minimum uncertainty in the velocity of such an
electron in any one direction?

Consider a particle in a box. By what factor does the number of accessible

states increase if you:

(a) double the height of the box,

(b) double the width of the box,

(c) double the magnitude of the maximum momentum allowed to the
particle?

Starting with the replacement of the sum over states by an integral, ) . —
[&rdp/h* = [ g(e)de, derive the results 1.9 for the density of states g(e)
for an ideal gas.

(a) Estimate the density of states accessible to an air molecule in a typical
classroom. Assume that the classroom is 6 m by 8 m by 3 m and that the
molecule’s maximum energy is about 0.025 eV (4 x 1072! joules) and
its mass is 5.7 x 1072 kg. Express your answer in states per joule and
in states per eV.

(b) If this air molecule were absorbed into a metallic crystal lattice which
confined it so that it could move only approximately 10~'' m in each
direction, what would be the density of states available to it, expressed
in states per eV?

The total angular momentum of a particle is the sum of its spin and orbital
angular momenta and is given by Jiow = [j(j + 1)]'/?%, where j is the
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maximum z-component in units of 7. With this information, calculate the
angles that a particle’s angular momentum can make with the z-axis for:

(a) a spinless particle in an / = 2 orbit,

(b) a spin-1 boson by itself (in no orbit),

(c) aspin-1/2 fermion by itself.

A hydrogen atom is sometimes found in a state where the spins of the proton
and the electron are parallel to each other (e.g., s, = +1/2 for both), yet the
atom’s total angular momentum is zero. How is this possible?

Use the relationship 1.16 to estimate the magnetic moment of a spinning elec-
tron, given that an electron is a spin-1/2 particle. If an electron were placed
in an external magnetic field of 1 tesla, what would be the two possible values
of its magnetic interaction energy? (1 tesla = 1 weber/m? = 1Js/(C m?))

Repeat the above problem for a proton.

Estimate the number of quantum states available to an electron if all the
volume and energy of the entire universe were available to it. The radius of
the universe is about 2 x 10'° LY, and one LY is about 10'® m. The total
energy in the universe, including converting all the mass to energy, is about
107° J. The electron would be highly relativistic, so use E = pc.

Consider an electron in an / = 1 orbit, which is in a magnetic field of 0.4 T.
Calculate the magnetic interaction energies for all possible orientations of its
spin and orbital angular momenta (i.e., all /,, s, combinations).

The strength of the electrostatic force between two charges ¢, and g, sepa-
rated by a distance r is given by F = kcq1¢,/r?, where kc is a constant given
by 8.99 x 10° Nm?/C2.

(a) Whatis the electrostatic force between an electron and a proton separated
by 0.05 nm, as is typical in an atom?

(b) If this same amount of force were due to a spring stretched by 0.05 nm,
what would be the force constant for this spring? (F = —«x, where « is
the force constant.)

(c) Suppose that an electron were connected to a proton by a spring with
force constant equal to that which you calculated in part (b). What would
be the angular frequency (w? = «/m) for the electron’s oscillations?

(d) What would be the separation between allowed energy levels, in eV?

(e) How does this compare with the 10.2 eV separation between the ground
state and the first excited state in hydrogen?

According to our equation for a particle in a harmonic oscillator potential,
the lowest possible energy is not zero. Explain this in terms of wavelengths
of the standing waves in a confinement.
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Section C
30. In how many different ways can a dime and a nickel, land when flipped? A
dime, nickel, and quarter? How about 10%* different coins?

31. A certain fast-food restaurant advertises that its hamburger comes in over
10?3 different ways. How many different yes—no choices (e.g., with or without
ketchup, with or without pickles, etc.) would this require?
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As indicated in Chapter 1, we will begin our studies by considering “small sys-
tems” — those with relatively few elements. Small systems are important in many
fields, such as microelectronics, thin films, surface coatings, and materials at low
temperatures. The elements of small systems may be impurities in semiconduc-
tors, signal carriers, vortices in liquids, vibrational excitations in solids, elements
in computer circuits, etc. We may wish to study some behavioral characteristic
of a small population of plants or people or to analyze the results of a small
number of identical experiments. Besides being important in their own right, the
pedagogical reason for studying small, easily comprehensible systems first is that
we gain better insight into the behaviors of larger systems and better appreciation
for the statistical tools we must develop to study them.

The introduction to larger systems will begin in Chapter 4. Each macroscopic
system contains a very large number of microscopic elements. A glass of water
has more than 10%* identical water molecules, and the room you are in probably
has over 10?7 identical nitrogen molecules and one quarter that number of iden-
tical molecules of oxygen. The properties of large systems are very predictable,
even though the behavior of any individual element is not (Figure 2.1). This
predictability allows us to use rather elegant and streamlined statistical tools in
analyzing them.

By contrast, the behaviors of smaller systems are more erratic and unpre-
dictable, requiring the use of more detailed statistical tools. These tools become
cumbersome when the number of elements in the system is large. But fortunately,
this is the point where the simpler and more elegant methods for large systems
become useful.

25
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Figure 2.1 The behavior
of a swarm of gnats is
much more predictable
than the behavior of just
one or two. The larger the
system, the more
predictable its behavior.
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A Mean values

We now develop machinery to relate the properties of a system to the behaviors
of the individual elements. To start our development, we imagine we have many
identically prepared systems.! For example, if our system is a flipped coin then
we have many of them, or if our system is two rolled dice then we have many
pairs of rolled dice. Each system could be in any of several different possible
configurations or “states.” We let P, indicate the probability that a system is in
the state s.

Suppose that we are interested in some function f, which has the value f;
when the system is in state 5. Then the average or mean value f is determined as
follows:

F=>_fP. 2.1)

Example 2.1 Our system is a single coin and the function f'is the number of
heads. That is, f = 1 for heads, and f* = 0 for tails. What is the mean value of /'
if many coins are flipped?

The probabilities for heads and tails are P, = 1/2, P, = 1/2, so the mean
value of f'is

f=hAPi+ fih=1x1+0xi=1
The average number of heads showing per coin is 1/2.

Example 2.2 Suppose that now each system is a single rolled die and » indicates
the number of dots showing upward. Suppose that f'is the square of the number
of dots showing upward ( f, = n?). What is the mean value of fif large numbers
of dice are rolled?

Each of the six faces has probability 1/6 of facing upwards, so

F=)nP=1Pxi42xi43 x4 x ]
+5xl46rxi=2

The mean value of f = n?is 91/6, or about 15.2.

1 A large set of identically prepared systems is called an ensemble.
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If fand g are two functions that depend on the state of a system and ¢ is a
constant then

f+
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These two relations follow directly from the definition of the mean value 2.1
(homework).

B Probabilities for various configurations
B.1 One criterion

We now calculate the probability for a system to be in each of its possible con-
figurations or states. For example, what is the probability that three flipped coins
land with two heads and one tails? Or what is the probability that 12 flipped coins
land with five heads and seven tails?

In this type of problem, we first select the appropriate criterion for the individ-
ual elements. Then we let p represent the probability that the criterion is satisfied
and g the probability that it is not. Examples that we will use in this chapter
include the following.

® Criterion: aflipped coin lands heads up. The probability that this criterion is satisfied
is 1/2, and the probability that it is not satisfied (i.e., the coin lands tails up) is also 1/2.
Therefore

p=1/2, qg=1)2.

® Criterion: a certain air molecule is in the front third of an otherwise empty room. In
this case,

p=1/3, q=2/3.
® Criterion: a rolled dice lands with six dots up. In this case,
p=1/6, q=15/6.

A correctly formulated criterion is either satisfied or not satisfied, so we can say
with certainty that it must be one or the other:

probability for one or the other = p + ¢ = 1.

Now suppose that a system has two identical elements, which we label 1 and 2.
The possible configurations and probabilities for the two elements are given by
writing

(pr+q)p2tq)=1x1=1=pipr+ piq2 +q1p2 + q:19-

Here p p, is the probability that both elements satisfy the criterion, p;q; is the
probability that element 1 does and 2 does not, and so on. There are a total of
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four possible configurations, as indicated by the four terms on the right in the
equation above, and each term is the probability for that particular configuration.
The fact that the four terms add up to unity reflects the certainty that the system
must be in one of the four configurations.

Example 2.3 We are interested in whether two rolled dice (labeled 1 and 2)
both land with six dots up. What are the probabilities for the various possible
configurations of the two dice?

The probability that either die lands with six dots up is 1/6, and the probability
that it does not is 5/6:

p=p2=1/6, g =¢=5/6.
The probabilities for all possible configurations are again given by writing
(p1+9)P2+ @) =pip2 + P12+ 12 +q1q2 = 1.

Accordingly, the probabilities for the four possible configurations of the two dice
are:

* both show sixes, pip2 = (%) (%) = (i)

* die 1 shows six, but die 2 does not, P12 = (

N
—
%)
~
Il
—_
&l
~

6/ \6
® die 1 doesn’t show six, but die 2 does, qi1pr = (%) (%) = (i);
* neither shows six, a2 =(3)(3)=(2).
If two elements have identical probabilities, such as two coins, two dice, or
two air molecules in the room, we can write
pPr=p2=p and q1 =42 =¢(q.

The probabilities for the various possible configurations are then given by

Pr+a)p2+a)=p+q9’=p" +2pqg+4¢ =1.

The probabilities are p? that both elements satisfy the criterion, g2 that neither
does, and 2pq that one does and the other does not. The coefficient 2 in this last
expression indicates that there are two ways in which this can happen:

® p1q2, die 1 satisfies the criterion and die 2 doesn’t, or
® g, p,, die 2 satisfies the criterion and die 1 doesn’t.

If we extend our analysis to systems of three elements, we find that the prob-
abilities are given by writing

Pr+a)P2+a)(ps+a3)=(p+4q) =p* +3p’q+3p8* +q° = 1.

Accordingly, the probabilities of the various possible configurations are as
follows:
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* p3, all three satisfy the criterion;

* 3p2q, two satisfy the criterion and one doesn’t;
. 3pq2, one satisfies the criterion and two don’t;
* ¢3, none of the three satisfies the criterion.

Looking at the 3 p?¢ term, for example, the coefficient 3 indicates that there are
three different configurations for which two elements satisfy the criterion and
one doesn’t. The following table lists these possibilities.

Elements that do Element that
satisfy the criterion does not
1,2 3

1,3 2

2,3 1

Example 2.4 You flip three coins, labeled 1, 2, and 3. What are the three different
ways in which they could land with two heads and one tail, and what is the
probability of this happening?

The three different possibilities would be hht, hth, and thh. The probability
for two heads and one tail would be

1\ /1 3
3pq=3(=) (=) ==
ra=3(3) () =5

We can continue to expand the above development to systems of four elements,
or five, or any number N. For a system of N elements, the probabilities for all the
possible configurations are given by the binomial expansion:

N
an — 1N = 1.
P+ "Z(;n,(N_n),

The nth term in this expansion represents the probability Py (n) that n elements
satisfy the criterion and the remaining N — n elements do not:

!
N1 n N—n

Py(n) = mﬁ q . (2.42)

The number of different arrangements for which » elements satisfy the criterion
and N — n do not is given by the binomial coefficient in the above expression
(Figure 2.2):

N!

number of such configurations = ——. (2.4b)
n!(N —n)!

Example 2.5 Consider five air molecules in an otherwise empty room. What
is the probability that exactly two of them are in the front third of the room?

29
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Figure 2.2 The number
of different ways in which
n of N elements can
satisfy a criterion,
illustrated here for: 1 of 3
(left); 2 of 4 (middle); and
2 of 5 (right). A plus sign
indicates an element that
satisfies the criterion and
a blank indicates one that
does not.
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Also, how many different arrangements of these five molecules are there such
that exactly two are in the front?

For each molecule, the probability of being in the front third is 1/3, so p =
1/3,q = 2/3. Our system has N = 5 molecules. The probability for n = 2 of
them to be in the front third is

51 /1\*/2\° 80
PsQ)=— (=) (Z) === =033.
2131\ 3 3 243

The number of different arrangements is given by the binomial coefficient

5!

— = 10.
2131

B.2 Handling factorials

Although these probability calculations are correct for systems of any size, they
become cumbersome if there are more than a few elements. For example, if we
wanted to know the probability that exactly 40 out of 100 flipped coins land
heads, the answer would be

1000 /1\* /1\*
Proo(@0) = Z&EE?(E) (z) '
Although numbers like (1/2)* can be calculated using logarithms, the facto-
rials (e.g. 100! = 100 x 99 x 98 x 97 x - --) become overwhelming when the
numbers are this large.

Fortunately, an approximation known as Stirling’s formula allows us to calcu-
late factorials accurately for larger numbers. Stirling’s formula is

ml ~ Jﬂ(%) (2.52)
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or, using logarithms,
1
Inm!~mlnm —m + = In27m. (2.5b)

As you will show in a homework problem, this approximation is accurate to 0.8%
for m = 10, and its accuracy increases as m increases.

B.3 Many criteria

How does our treatment apply to the probabilities for distributions involving more
than two possibilities? For example, what if we are interested in the following
distribution of air molecules between the following three parts of a room, from
front to back,

¢ the front third (p; = 1/3),
* the next sixth (p, = 1/6),
* the back half (p; = 1/2)?

In the problems you will extend the treatment given here to show that for a
system of N elements with a complete set of m mutually exclusive criteria’
whose probabilities are respectively py, pa, ... pm, the probability that n; satisfy
the first criterion, n, satisfy the second, etc. is given by

N!
Py(ni,ny, ..., ny) = — 'pf‘pgz cophm (2.6)
NN ...y

Summary of Sections A and B

If fis a function that has the value f; when the system is in state s and if P is
the probability that the system is in state s, then the mean value of fis given by
(equation 2.1)

T =)

where the sum is over all states s accessible to the system.
If f and g are functions of the state of a system and c is a constant, then
(equations 2.2, 2.3)

f+

C

0q
Il
~|

+z,
f.

Suppose that we are interested in some criterion for the behavior of a single

<
I
o

element of a system, for which p is the probability that the criterion is satisfied and
q is the probability that it is not satisfied (¢ = 1 — p). Then for a system of N

2 This means that each element must satisfy one criterion, but only one, so p; + p2 +---+
pm=1 ni+ny+---+n,=N.
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elements, the probability that this system is in a state for which » elements satisfy
the criterion and the remaining N — n elements do not is given by (equation 2.4a)
!
Py(n) = ﬁﬂfwﬂ

The binomial coefficient N!/[n!(N — n)!] is the number of different configurations
of the individual elements for which # satisfy the criterion and N — »n do not.

A useful tool for calculating the factorial of large numbers is Stirling’s formula
(equations 2.5a, b),

m! ~ A/ 2mrm (ﬁ)m s
e

or equivalently

1
Inm!'~mlnm —m + 2 In27wm.

For a complete set of m mutually exclusive criteria, whose probabilities are
respectively pi, pa, ..., pm, the probability that, out of N particles or elements, 7,
satisfy the first criterion, n, the second, and so on is given by (equation 2.6)

N!

— nyp _n2
Py(ni,ng, ... nm) = —————pi'py’ ...
NNl Nyt

C Statistically independent behaviors

So far, we have assumed that the behaviors of the individual elements of a system
are statistically independent, that is, that the behavior of each is independent of
the others. For example, we assumed that the probability that coin 2 lands heads
up does not depend on how coin 1 landed.

There are many systems, however, for which the behaviors of the individual
elements are not independent. For example, suppose that you are drawing aces
from a single deck of cards. The probability for the first draw to be an ace is 4/52,
because there are four aces in a deck of 52 cards. For the second card, however,
the probability depends on the first draw. If it was an ace, then there are only three
aces left among the 51 remaining cards. If not, then there are still four aces left.
So the probabilities for the second card would be 3/51 or 4/51, depending on the
first draw. The two behaviors are not statistically independent?® (Figure 2.3).

In physical systems, interactions among particles often mean that any particle
is influenced by the behaviors of its neighbors. Consequently, when we use the
results of this chapter we must take care to ensure that the behaviors of the
individual elements are indeed statistically independent. We may have to choose
groups of particles as our elements perhaps an entire nucleus, or a molecule, or a
group of molecules. But when the criteria are statistically independent, the total

3 You can still use probabilities to handle these situations but not the preceding method, because there
we assumed that p and ¢ for any one element are independent of the behavior of the others.
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probability with respect to all the criteria is simply the product of the individual
probabilities.

Example 2.6 Consider a single air molecule in an empty room. What are the
probabilities for the positions of that molecule with respect to the front third and
the top half of the room?

® Criterion 1: the molecule is in the front third, py = 1/3, ¢, = 2/3.
® Criterion 2: the molecule is in the top half, p, = 1/2, g, = 1/2.

(The subscripts on the probabilities here indicate the criterion to which they
belong.) The various probabilities with respect to both these criteria are then:

¢ front third, top half, p, p, = (1/3)(1/2) = 1/6;

¢ front third, bottom half, p;q, = (1/3)(1/2) = 1/6;

* rear two thirds, top half, g, p, = (2/3)(1/2) = 2/6;

® rear two thirds, bottom half, ¢;q, = (2/3)(1/2) = 2/6.

Example 2.7 Suppose that you flip three coins and roll two dice. What is the
probability that exactly two of the coins land heads up and that one of the dice
shows a six?

The probability that two of three coins land heads up (p = 1/2,q = 1/2) is,

using result 2.4a,
pay- 2 (Y (L) 22
o \2) \2) T
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Figure 2.3 What is the
probability that the very
next card dealt will be a
queen? Does it depend on
what has already been
dealt? How?



34

Introduction to thermodynamics and statistical mechanics

and the probability that one of the two dice shows a six (p = 1/6,9 = 5/6) is

20 /71N\'/5\! 5
P = 1'1'<8) (5) aiT)

Because the behavior of the dice is independent of the behavior of the coins, we
simply multiply the two together. The answer is

(5) )=

Using the definition 2.1 of mean values, we can prove that, for two functions
fand g having two statistically independent behaviors, the mean value of the
product of the two functions is simply the product of the mean values:

fe=Trg @7

To show this, take P; to be the probability that the system is in state i with
respect to the first behavior and ¥, to be the probability that the system is in state
j with respect to the second behavior. The combined probability for the system
to be in the state (i, j) with respect to the two behaviors is P; ¥;. The mean value
of the product fg is then given by

Te=) (PW))fig; = ZPfZWJg,—

Example 2.8 What would be the mean value of the product of the numbers
showing upwards for two rolled dice?

Let n; and n; be the numbers showing on the first and second die, respec-
tively. The two are statistically independent, because how the second die lands is
independent of the first. The mean value of the number showing on either die is

(1+2434+4+5+6)/6=35.
Therefore,
g =17, = (3.5)(3.5) = 12.25.

In the homework problems this same thing is calculated the hard way — namely,
by finding the mean value of n7n, for all 36 different configurations for the two
dice.

Summary of Section C

When the behavior of one element of a system is unaffected by the behavior of
another, or when an element’s behavior with respect to one criterion is unrelated to
its behavior with respect to another, then the two behaviors are statistically
independent. For statistically independent behaviors, the probabilities are
multiplicative. That is, if P and }¥ are the probabilities for two statistically
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independent behaviors satisfying their respective criteria, then the probability that

both behaviors satisfy the respective criteria is given by the product P V.

If fis a function of one behavior and g is a function of a statistically independent

behavior then the mean value of the product is the product of the mean values

(equation 2.7):

g=/%g

Problems

Section A

1.

Suppose that Ps is the probability that a system is in state s, ¢ is a constant;
and f'and g are two functions that have the values f; and g, respectively,
when the system is in state s. Using the definition of mean values 2.1 prove
that:

(@ U+ =r+g

(b) c¢f =cf.

. A coin is flipped many times. If fieags = 5 and fi;s = 27, what is the mean

value of f (i.e., the average value of fper flip)?

. The number of dots showing on a die is #, and f(»n) is some function of . If

you were to roll many many dice, what would be the mean value of f for
@@ f=@n+2)

(b) f=(@n—2),

() f=n*=5n+1,

(d) f=n’-10?

. A weighted die is rolled in such a way that the probability of getting a six is

1/2 and the probability of getting each of the other five faces is 1/10. What
would be the average value per roll of.

(a) the number of dots (f, = n),

(b) the square of the number of dots ( f;, = n?)?

. You have a die that is weighted in such a way that the probability of a six

is 3/8 and the probability of each of the other five states is 1/8. Consider a
function f(n) = (n — 2)?, where n is the number showing. What would be
the average value of this function per roll, if you were to roll the die many
times?

. Consider a spin-1/2 particle of magnetic moment y in an external magnetic

field B. Its energy is £ = —uB if it is spin up and £ = +uB if spin down.
Suppose the probability that this particle is in the lower energy state is 3 /4
and that it is in the higher energy state is 1/4. Find the average value of the
energy of such a particle, expressed in terms of uB.
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Section B

7.

10.

11.

12.

13.

14.

15.

16.
17.

18.

Consider a system of four flipped coins.

(a) What is the probability that two land heads and the other two tails?

(b) Label the four coins 1, 2, 3, and 4. Make a chart that lists the various
possible configurations that have two heads and two tails. Is the number
of configurations on your chart the same as that predicted by the binomial
coefficient in equation 2.4?

. Consider a system of five molecules. The probability that any one is in an

excited state is 1/10. Find the probability that there are
(a) none in an excited state,

(b) one and only one in an excited state,

(c) two in excited states.

. If you roll two dice, what is the probability of throwing “snake eyes” (each

die showing one dot up)?

If you were to roll four dice, find the probability that
(a) none lands with six dots up,
(b) one and only one lands with six dots up.

If you roll eight dice, find the probability that

(a) five and only five have four dots up and the number of different config-
urations that give this outcome,

(b) five or more have four dots up?

Consider five spin-1/2 elementary particles (distinguishable and with no
external fields present). What is the probability that four have spin up and
the other has spin down, and how many different configurations of the five
could give this result?

What is the probability for exactly three of five flipped coins to land heads,
and in how many different ways can they land to give this result?

Consider five air molecules in an otherwise empty room. What is the prob-
ability that at any instant exactly three of them are in the front third of the
room and the other two are in the back two thirds?

For 16 flipped coins, how many different ways could they land with 12 heads
and four tails?

Roughly what is the numerical value of 200! in powers of 10? (e¥ = 10%4343x)

Using Stirling’s formula, calculate the probability of getting exactly 500
heads and 500 tails when flipping 1000 coins.

If you flip 100 coins, what is the probability that exactly 42 land heads
up?



19.

20.

21.

22.

23.

24.

25.
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Suppose you roll 500 dice. Using Stirling’s formula, calculate the probability
of rolling exactly: (a) 50 sixes, (b) 80 sixes, (c) 200 sixes.

Test the accuracy of Stirling’s formula by comparing its results percentage-
wise with explicit calculations of n!, for the following values of n: (a) 2,
(b) 5, (¢) 10, (d) 20.

Consider a system of 100 coins which you can tell apart. (The ability to tell
them apart is important, as we’ll see later in the book.) How many different
configurations are there that give a total of 50 heads and 50 tails?

Suppose that you roll three dice and flip three coins. Find the probability of
getting exactly:

(a) one six and one head,

(b) no sixes and no heads,

(c) two sixes and two heads.

Calculate the probability of getting exactly two sixes and one five when

rolling five dice. Do this in two different ways, as follows.

(a) First calculate the probability that two of the five dice land sixes, and then
multiply this by the probability that one of the remaining three lands a
five. (note: The remaining three dice have only five ways in which they
can land.)

(b) Next calculate the probability that one of the five dice lands a five, and
then multiply this by the probability that two of the remaining four dice
land a six.

(c) Are the two results the same? (If not, you have made a mistake.)

Consider two mutually exclusive criteria, such as the criteria in the previ-
ous problem. An element of a system cannot satisfy both simultaneously.
Suppose that there are r equally probable outcomes, so that p = 1/r is the
probability of satisfying the first criterion. After those elements satisfying the
first have been excluded, there are only » — 1 possibilities for the remaining
elements, so the probability for the second criterion to be satisfied becomes
1/(r — 1). What is the probability Py(n, m) that n out of N elements sat-
isfy the first criterion, and m of the remaining N — n elements satisfy the
second?

Start with the binomial probability distribution 2.4, and look at what might
happen to those particles that did not satisfy the criterion (for example, those
molecules that were not in the front third of the room). These failures with
respect to the first criterion might themselves be split into two groups with
respect to another, mutually exclusive, criterion, with probabilities p’ and p”,
respectively, of satisfying that criterion. For example, those molecules not in
the front third of the room might be in the next one sixth (p’ = 1/6) or the
back half (p” = 1/2),sothatg = 1 — p = p’ + p”. Now expand the gV "
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term in the binomial distribution by using another binomial expansion for
gV ™" = (p’ + p”)N " to find the probability that, out of these N — # failures
with respect to the first criterion, #’ satisfy the probability-p’ criterion and
the remaining n” (= N — n — »’) satisfy the last criterion (i.e., satisfy neither
of the first two). You should wind up with equation 2.6 for the case of three
criteria. You can keep splitting up each of the criteria into subgroups in the
above manner to get the probabilities with respect to any number of mutually
exclusive criteria.

Section C

26.

27.
28.

29.

30.

31.

You are dealing cards from a full 52-card, freshly shuffled, deck. You are

interested in whether the first two cards dealt will be clubs. Criterion 1: the

first card is a club. Criterion 2: the second card is a club.

(a) Are these two criteria statistically independent?

(b) If you return the first card to the deck and reshuffle before dealing the
second card, would the two criteria be statistically independent?

Answer the questions in Figure 2.3.

Suppose that you have two freshly shuffled full decks of cards, and you deal

one card from each.

(a) What is the probability that the first card dealt is an ace?

(b) What is the probability that the second card dealt is a club?

(c) Are the two criteria statistically independent?

(d) What is the probability that the first card dealt is an ace and the second
card dealt is a club?

You are involved in a game where two cards are dealt in the manner of the
previous problem. Suppose that the dealer pays you $3 if the second card
dealt is a club, regardless of the first card and that you pay him $1 if the
second card is not a club and the first card is not an ace. (Otherwise, no
money changes hands.) Use equation 2.1 to compute the mean value of the
money you win per game if you play it many times.

Consider 10 air molecules in an otherwise empty room. Find the probability

that

(a) exactly four molecules are in the front third and exactly six in the top
half,

(b) exactly three molecules are both in the front third and the top half (that
is, the same molecules satisfy both criteria).

You roll two dice many times and are interested in the average value of the
product of the two numbers showing, n;n,. Calculate this product for all 36
possible different configurations of the two dice and take the average of these
36 values. How does your answer compare with that in Example 2.8?
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32. Youroll two dice at a time. Die 1 has 6 different possible states and die 2 also
has 6, making a total of 6 x 6 = 36 different ways the two can land. Suppose
that f'is the sum of the number of dots showing on the two dice. Calculate
the mean value of f'per roll using two approaches.

(a) Sum over all 36 configurations the probability of occurrence of a config-
uration (1/36) times the sum of the dots showing in that configuration.

(b) Noting that the outcomes for the two dice are statistically independent
(the probabilities for the second die are independent of the results for the
first roll), use the result that  + g = f + g. (The two answers should
be the same.)
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The techniques developed in Chapter 2 for predicting the behaviors of small
systems from the behaviors of their individual constituents are correct for systems
of any size; they become cumbersome, though, when applied to systems with
more than a few elements. Fortunately, there is an easy way of streamlining our
calculations.

A Fluctuations

Suppose that we are interested in the outcomes of flipping 1000 coins.
Equation 2.4a gives us the correct probabilities for all 1001 possible outcomes,
ranging from 0 heads to 1000 heads; we get (Figure 3.1)

Piooo(0) = 9.3 x 107302, Piooo(1) = 9.3 x 107299,
P]()()()(z) =4.6 x 10_296,

But these 1001 separate calculations are a great deal of work and give more
information than would normally be useful. What if the system had a million
elements, or a billion?
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0.025 1
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It would be less work, less confusing, and nearly equally informative if we
could just calculate the following two numbers:

¢ the average number of coins that would land heads if the coin-flip experiment were
repeated many times;
* some measure of the fluctuations we could expect around this value.

In the above case of 1000 flipped coins, for example, it is extremely likely that the
number of heads will fall between 450 and 550 (Figure 3.1). But the probability
of getting exactly 500 heads is only 0.0252.

A.1 Mean value and standard deviation

We now investigate how to calculate mean values and characteristic fluctuations
for any system. We will imagine that we have a large number of such systems,
which have been prepared in the same way (an “ensemble”). For example, we
might have many systems of 1000 flipped coins. Equivalently, we might flip the
same set of 1000 coins many different times.

For large numbers of identically prepared systems having N elements each,
the average number of elements per system that satisfy a criterion is given by

7i = pN, 3.1)

where p is the probability for any given element to satisfy the criterion. We can
think of this as the definition of the probability p: it is the fraction of the total
number of elements that satisfy the criterion. Alternatively, this relationship can
be derived from the definition of mean values 2.1.

The average fluctuation of » about its mean value must be zero, because the
definition of the mean value guarantees that the positive fluctuations cancel the
negative ones. But the squares of the fluctuations are all positive numbers. So if
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Figure 3.1 Probabilities
for various numbers of
heads when 1000 coins
are flipped. The
distribution peaks at 500
heads, for which the
probability is 0.0252. As
you can see, the chances
of getting less than 450 or
more than 550 heads are
negligible.
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we average these and then take the square root, we have a meaningful measure
of the deviations, called the “standard deviation” (symbol o):

o =+/(n—n)y. (3.2)

In the next section we will show that for systems with large numbers of elements,
the distribution of n about the mean is commonly of a form called Gaussian and
that the probability for # to be within one standard deviation of the mean is 0.68.

The standard deviation is easily calculated from the number of elements N
and the probabilities p, g. To show this, we examine o2 and use the fact that 7 is
a constant for the system:

ol=m—nP=m—2in+n* =n® —2An+n =n? — 7. (3.3)

We already know that 77 = Np, but we must still find the mean value of n?:
— N!
2 — 2 _ 2 't .n_ N-n
n —Xn:n PN(n)—;n n!(N—n)!pq .
The easiest way to evaluate this sum is to use the binomial expansion

!
P+ = Z AN — n)!

9 2
n2pn — <p7> pn’
ap

where we treat p and ¢ as independent variables and evaluate the partial derivative
at the point p = 1 — g. With these, the above expression for the mean value of
n® becomes

n_N-—n

P4

and the trick that

N—n

— N
2 — 2 't o
" Xn:" (N —ny P

3\’ N! e 3\’
- () X = (o) o0

In this last form, we take the two derivatives and use p + ¢ = 1 to get (homework)
n? = (Np)*+ Npg =7> + Npgq.
Putting this into the last expression in equation 3.3 gives
6> =n?—7* = Npq or o =\/N—pq. 34

According to equations 3.1 and 3.4, as the number of elements in a system
increases, the mean value 7 increases linearly with N, whereas the standard devi-
ation o increases only as the square root of N:

nxN, o x +/N.
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Therefore, the fluctuations do not increase as fast as the mean value. The “relative
fluctuation” compares the fluctuations with the mean value and is given by

_YNeq _ [q 1
=N VW T (3.5)

As systems get larger, the fluctuations become a smaller fraction of the mean
values. Thus the larger the system, the more predictable its behavior. This is
illustrated in Figure 3.2.

s Q

Summary of Section A

Consider many identically prepared systems having N elements each. If p is the
probability that any one element satisfies a criterion of interest and g is the
probability that it does not, then the average number of elements that satisfy the
criterion is given by (equation 3.1)

n = pN;

the standard deviation for the fluctuations about the mean value is given by

(equations 3.2, 3.4)
o =+/(n—n)*>=./Npq,

and the relative fluctuation is given by (equation 3.5)

o_NNeq _ [4q 1
n Np Np N

‘We will soon show that for sufficiently large systems, the values of »n are within one
standard deviation of 77 68% of the time.

The fluctuation of a variable is often more interesting than its mean value. For
example, the average electrical current from an AC source is zero, because the
current goes in each direction half the time. Similarly, the average velocity of an

n

Figure 3.2 Plots of
probabilities as a function
of nfor systems of 25
elements (on the left) and
250 elements (on the
right), with p=1/2. As N
increases, the absolute
width of the peak
increases, but its relative
width decreases.
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air molecule in your room is zero, although the individual molecules are moving
very fast. In these and many other examples, the mean value of the variable
may be misleading, suggesting no motion at all. The standard deviation may be
much more illuminating. When the mean value of a variable is zero, its standard
deviation is sometimes called its “root mean square” value, because in this case
it equals the square root of the mean of the squares.

A.2 Examples

Example 3.1 Consider systems of 100 molecules in otherwise empty rooms.
What is the average number of molecules in the front third of the rooms, the
standard deviation about this value, and the relative fluctuation?

For this case, N = 100, p = 1/3, and ¢ = 2/3. Therefore we have

1
= pN = (3) (100) = 33.3,

o =+/Npqg = [(100) (%) (%) =47,

Example 3.2 Repeat the above for typical real systems of 10?® molecules in
otherwise empty rooms. For this case N = 10%%, and p and g remain the same as
above, so

47
= =0.14.
333

ST

n=pN= (%) (10%*) = 3.3 x 107,

o= - () )

= 4.7 x 10",
= 1.4 x 1074

3| Q

Notice the tiny relative fluctuation for this system of 10?® particles; the larger
the system, the smaller the relative fluctuations. Macroscopic systems are very
predictable, even though their individual elements are not.

B The Gaussian distribution

We have seen that for systems of more than a few elements, calculating the
probabilities Py (n) from the binomial formula 2.4a can be an extremely tedious
task. Fortunately, there is an easier way. The entire distribution of probabilities
over all possible configurations, or states, can be expressed in terms of the two
parameters 7 and o, which we can calculate from equations 3.1 and 3.4. This sim-
plified Gaussian distribution involves approximations that become increasingly
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reliable as the number of elements in the system gets larger. Therefore, the Gaus-
sian distribution is useful in those cases where the binomial formula is not. For
small systems, only the binomial approach is correct. For larger systems, both
approaches are accurate but the Gaussian approach is much simpler.

B.1 The Taylor series approach

Our derivation of this simplified formula will involve a Taylor series expansion.
The derivation is given in Appendix B and goes as follows. Consider a smooth
differentiable function f(x). Suppose that we know the value of this function and
all its derivatives at some point x = a. Then we can calculate the value of the
function at any other point through the formula

=1
J@) =3 — " @) (x —a)", (3.6)
m=0 °
where
f™(a) = fbcf -

Writing out the first few terms explicitly gives

) = f@)+ fl@)x —a)+ 3 f"(@)x —a) +---. (3.6)

Notice that if the function is a constant, only the first term contributes. If the
function is linear in x, only the first two terms contribute, and so on. Notice also
that the higher-order terms become smaller as x — a becomes smaller. These
two observations tell us that the smoother the function and the closer x is to a,
the more accurately the first few terms approximate the function at the point x.
Therefore, in using the Taylor series expansion, it is advantageous to:

* apply it to functions which are as smooth as possible; and

® choose a to be close to the values of x in which we are interested.

In our case we consider Py(#n) to be a continuous function of n. To satisfy
the first criterion, we expand the logarithm of Py (), because the logarithm of a
function varies much more slowly and smoothly than does the function itself. To
satisfy the second criterion, we expand around the point of highest probability. If
nmax Tepresents the state of the system for which Py (n) is a maximum then we
are most likely to be interested in values of Py (n) for n near ny,x, because they
occur more frequently.

We assume that the probability peaks at # (nmax = 7). This may not be
true for small systems with skewed distributions. But for larger systems, the
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Figure 3.3 Relative
frequency of occurrence
vs. the fraction of the
flipped coins that land
heads, for systems of 10,
100, and 1000 coins.
Larger systems have
more peaked distributions
and smaller relative
fluctuations.
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probability distribution is more sharply peaked (Figures 3.2 and 3.3), forcing
nmax and 7 closer together. Consequently, this approximation is indeed justified
in those larger systems for which we are seeking an alternative to the binomial
expansion.

B.2 Derivation

We begin our derivation by expanding the logarithm of Py (n) about the point
n = n, according to the Taylor series formula (we drop the subscript N to avoid
clutter):

d
In P(n) = In P(7) + < InP(n)|  (n—7)
n n=n
N
i _
2 i n - n—n
To evaluate these terms, we write!
N!
In P(n) = In ————— p"g"~"
n P =In P

=InN!—Inn!—In(N —n)!+nlnp+ (N —n)lng

and then use Stirling’s formula 2.5a to write out the logarithms of the factorials
(equation 2.5):

1
Inm!'~mlnm —m + Eln2rrm,

UIn(ab) = Ina 4 Inb, In(a/b) = Ina — Inb, and Ina® = bIna.
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In this form, we can take the derivatives and evaluate the first few terms at the
point n = n (with#n = Np and ¢ = 1 — p) to get (homework):

1 1 1 1
InP(n)=-In =sn—s;,
2 2xNpgq 2 2mo
d
— P =0,
dn " (n) n=n

d2
37 In P(n)

n=n Npq - 02'

The first derivative is zero and the second derivative is negative, as must be true
if the function indeed has its maximum at the point » = . We ignore third-
and higher-order terms, because the expansion to second order already gives us
amazingly accurate results for P(n), even for values of n far away from 7. Our
expansion is now

1 1 1 1 _
lnP(n)=§1n2m72 +0+5<—;>(n—n)2+-~

and, taking the antilogarithm,

1 _
P(n) = Nir? g (/207 with 62 = Npg,n = Np. (3.7

‘We will encounter Gaussian distributions like this several times in this course, so
we add a summary paragraph for future reference.
Any function of the form

F(z)= Ce®"  (Gaussian) (3.8)

is called a Gaussian distribution and has a characteristic bell-curve form. As we
saw above, the constant B is related to the standard deviation o and to the second
derivative of the logarithm of the function through

3.9)

If the total area under the curve is unity, as must be true for probability dis-
tributions,? then the height and width of the bell curve are related through
C = (B/m)"? (homework), so

+00
F(z) = \/g e for / F(z)dz = 1. (3.10)

2 That is, we are absolutely sure that the system must be in one of its possible configurations, so the
sum of the probabilities over all possible configurations must equal unity.
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Figure 3.4 Comparison
of the Gaussian
predictions 3.7 with the
correct binomial result 2.4
for the probabilities Py(n)
for systems with N=4
and N = 10 elements,
respectively (p=1/2).

Figure 3.5 Fora
Gaussian distribution,
68.3% of all events are
within one standard
deviation of the mean (),
95.4% are within two
standard deviations, and
99.7% are within 3
standard deviations.
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B.3 Accuracy and spread

We know that the Gaussian distribution 3.7 should be more accurate for larger
systems. But how large must they be? In Figure 3.4 the predictions of the Gaussian
approximation (crosses) and the correct predictions of the binomial formula (dots)
are compared for systems of N = 4 and N = 10 elements, with p =g = 1/2. 1t
is seen that even for N = 4 the Gaussian approximation is remarkably accurate,
and for N = 10 the two are almost indistinguishable.

To find the probability that » is within one standard deviation of 7, we sum
(numerically) the probabilities over all n between 7 — o and7# + o':

n+o n+o n+o
Y Pmy= ) P(n)An%[ P(n)dn = 0.683.

—0

(3.11)

n=n—o n=n—o

That is, for a Gaussian distribution 68.3% of all events lie within one standard
deviation of the mean. In a similar fashion we find that 95.4% of all events lie
within two standard deviations of 7, 99.7 within three standard deviations, etc.
(Figure 3.5).
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Summary of Section B

For a system of NV elements, each of which has probability p of satisfying the criterion
of interest and probability g of not satisfying it, the probability that » elements
satisfy the criterion and the remaining N — n do not is given by (equation 2.4a)
N!
P — n_N-—n
N(n) A =P 4
and, for systems with more than just a few elements, we can write this as
(equation 3.7)

e—(n—ﬁ)z /202

P(n) =

5

2o

where (equations 3.1, 3.4)

n=Np and o =+/Npq.

Equation 2.4a is correct for all systems, but it is most useful for very small systems.
For larger systems the second form, 3.7, is easier to use, and its accuracy increases
as the size of the system increases.

Any function of the form (equation 3.8)

F(z) = Ce 5 (Gaussian)
is called Gaussian. The constant B is related to the standard deviation o and to the

second derivative of the logarithm of the function through (equation 3.9)

B 1 1 0? In F
= —— = ————1n
202 2 922

z=0
If the area under the curve is equal to unity, as must be true for probability
distributions, then (equation 3.10)

B B
C= = and therefore F(z)=,/— e B,
b4 big

B.4 Examples

We illustrate the application of the Gaussian distribution to probability calcula-
tions with the following examples.

Example 3.3 Suppose that there are 3000 air molecules in an otherwise empty
room. What is the probability that exactly 1000 of them are in the front third of
the room at any instant?
For the Gaussian distribution, we need the values of 7 and o . For this problem,
N =3000, n=1000, p=1/3, ¢q=2/3,

SO
7=pN=1000, o =+/Npg=258.
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With these, we have

L 00155 (n =)’
To ’ ’ 202 ’
and therefore
Ps000(1000) = e (=12 _ 0.0155¢70 = 0.0155.

o

Example 3.4 For the preceding case of 3000 air molecules in an otherwise
empty room, what is the probability that exactly 1100 air molecules will be in
the front third of the room at any instant?
Everything is the same as above except that n = 1100. So the exponent in the
Gaussian formula 3.7 is
(n =7y
202

Consequently, the answer to the question is

= —7.50.

1 ,
Piono(1100) = N e~=m*/20% _ 0 0155¢~75 = 8.55 x 107,
ToO

C The random walk
C.1 The problem

One important further application of probabilities is the study of motion that
occurs in individual discrete steps. If each step is random, independent of the other
steps, then the study of the net motion is referred to as the “random walk problem.”

The problem relates to an ensemble of drunkards who begin their random
strolls from a single light post. The lengths and directions of their steps might be
influenced by such things as the wind, the slope of the ground, etc. But, given the
probabilities of the various directions and lengths for a single step, we can use
the tools of this chapter to answer the following two questions:

e after each person has taken N steps, what will be the average position relative to the
starting point?
* How spread out will the drunks be? That is, what will be the standard deviation of their

positions around their average position?

Motion in more than one dimension can be broken up into its individual
components, so we develop the formalism for motion in one dimension.

Among the studies that fit into the random walk framework is molecular diffu-
sion, for which a step would be the distance traveled between successive collisions
with other molecules. A molecule may go in any direction and may go various
distances between collisions. Similarly, the travel of electrons through a metal, of
“holes” through a semiconductor, and of thermal vibrations through a solid are
all random walk problems.
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Sometimes the motion for any one step is not completely random. In molecular
diffusion, for example, a molecule is more likely to scatter forward than backward,
indicating that its motion after a collision is not completely independent of its
motion before the collision. But after some number of collisions, any trace of its
previous motion will be lost. So we could fit this type of problem into the random
walk framework simply by letting a single step encompass the appropriate number
of collisions.

C.2 One step

The most difficult part of this problem is to find the average distance traveled and
the standard deviation for one single step, which we label 5 and o, respectively.
These two parameters answer the following two questions: “if a large number of
drunks had all started out at the same spot and had all taken one step of variable
size, where would they be, on average, and how spread out would they be? Once
these questions are answered, it is relatively easy to answer these questions for the
average position and spread after N steps, which we label Sy and oy, respectively.
Suppose that Py is the probability that a step is of length s in the direction of
interest. Alternatively, suppose that P(s)ds is the probability that the length of the
step falls within the range ds. Then by the definition of mean values, the average
distance traveled and the average of the square of the distance are given by

s=Y s or 5= /sP(s)ds (3.12)
and
sT=Y 5P or 2= /SZP(s)ds. (3.13)

From these we also get the standard deviation (equation 3.3):

0=(—5P=s52—255+5 =52 —5°. (3.14)

C.3 N steps

The equations (3.12)—(3.14) refer to a single step. We now find the average
distance traveled and the standard deviation after each drunk has taken “N”
steps.

The total distance gone by any particular drunkard is the sum of the distances
gone during each step:

N
SNZZS[:S1+S2+S3+~~~+SN
i=1

It is easy to average this over all drunks. Each step is completely random and
governed by the same probabilities as all other steps. So the average length of
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each is the same:

1 =8 :S:‘,:"':E.

Therefore, the average distance traveled after N steps is simply the product of the
number of steps times the average distance traveled in any step, Ns:

Sy=s1i+s+s3+ - +sy=5+5+5+---+5=N5. (3.15)

To calculate the standard deviation after N steps, we start from the definition.
As above,

0% = (Sw—SyP =8 — 5.

The term Ez is simply the square of the above result for Sy, but to find g, we
first write

Sy=Gi+s2+s+-).

When we square the expression on the right, we get N2 terms altogether. N of
these terms are squared terms, such as s7, s3, etc., and the remaining N(N — 1)
terms are cross terms, such as s;s,, 153, etc. Thus

SZZ\, = (Sf+S§+S§+~-')+(51S2+S|S3+-~-+5251 45283 4 53851 4+ 0)

= squared terms + cross terms.

In this form, the averaging is easy. Since the probability is the same for each
step, we have for the N squared terms

2 _ 2 2
S =8 =

= ... = g%,

Sl
8

For the N(N — 1) cross terms, we use the fact that the steps are independent of
each other. Therefore we use result 2.7 that fg = f g for statistically independent
behaviors and get

S18) = 5183 = 8§83 = - - =§§=§2

Combining these results for the N squared terms and the N(N — 1) cross terms,
we have

S_,ZV: (Slz+S22+S32+"’)+(S1S2+51S3+"‘+S2S1+52S3+"‘+S3S1+"')
= Ns2+ N(N — D)5

With this and the result 3.15 that Sy = N, we have for the square of the standard
deviation

02 = 8% — Sy = [Ns2 + N(N — 1)5*] — (N5’
—N <s_2—§2) — NoZ.
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Taking the square root of both sides of this equation we find that the standard
deviation for N steps is equal to the product of v/N and the standard deviation
for any one step:

oy =+/No. (3.16)

Notice that the average distance traveled, Sy, increases linearly with the num-
ber of steps N, whereas the standard deviation increases only as the square root
V/N. In comparison with the distance gone, the position of a random walker gets
relatively more predictable as N increases (provided that 5 # 0) but absolutely
less predictable (Figure 3.6).

VN 1
v _ N9 (3.17)
Sy N5 ﬂ

Note the similarity to the binomial probability distribution (equations 3.1, 3.4,
3.5), where the mean value increases linearly with A, the standard deviation as
VN , and the relative fluctuation as 1 /\/ﬁ (i.e., it decreases with N).

Summary of Sections B and C

For the random walk problem in any one dimension, if P; is the probability that
a step covers a distance s or P(s)ds is the probability that the length of the step
falls within the range (s, s + ds), then the average distance traveled and the
average squared distance traveled after each drunk takes one step are given by
(equation 3.12)

5 = ZSPS or 5= /sP(s)ds

and (equation 3.13)
F=Yer o = e,
The square of the standard deviation is given by (equation 3.14)
o2 =(s—5P =52 —5°

After N steps the average distance traveled and the standard deviation are
(equation 3.15)

Sy = N5
and (equation 3.16)
oNy = \/NO'.
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Figure 3.6 lllustration of
the average distance gone
(shown by arrows) and
the standard deviation
(shown by the shaded
disks) after 1, 5, and 20
steps, with s = 1 and

o =2. See equation 3.17.
Note that for one step, the
standard deviation is
large compared with
average distance traveled
but that after 20 steps the
reverse is true.
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C.4 Conduction in metals

As an example of the random walk problem, we consider a very approximate
picture for the motion of conduction electrons in a metal. We will assume that
the random thermal motion of the electrons causes each to undergo about 10'?
collisions per second, on average, and that typically they travel a root mean square
distance o in any direction of about 10~8 m between collisions. Normally, if all
directions of travel are equally likely, the average length of a step in any single
direction is zero.

In the presence of an electric field, however, one direction would be slightly
favored. In a typical case of conduction, the average net distance s traveled
between collisions is 107! m in the direction favored by the field. This is ten
million times smaller than the root mean square length of a single step due to
thermal motion, so you can see that the influence of the electric field is very small
compared with the random thermal motion. To sum up,

§=10"m, o=10""m.

We can use the random walk method to calculate the motion of the conduction
electrons over an extended time period. Let’s see what happens after 10 minutes
(600 seconds) have passed, for example. At 10'2 collisions per second, the number
of steps taken in 600 seconds is N = 6 x 10'4, so the average distance gone and
the standard deviation are

Sy = N5 =6x10*(10""m) = 0.6 m,
oy =+No =6 x 104108 m) = 0.2 m.

Notice that after 6 x 10'# steps the standard deviation is smaller than the
average displacement, even though it was ten million times larger than the
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average displacement for one single step. The larger the number of steps, the
more predictable is the behavior. Does this sound familiar?

Problems

Section A

1.

Consider many systems, each having 100 rolled dice. Suppose that we are
interested in the number of dice per system showing sixes. For these systems,
calculate

(a) the mean number of sixes,

(b) the standard deviation about this value,

(c) the relative fluctuation.

. Repeat the above problem for systems of 10% rolled dice.

. Using the theorem that the mean value of a constant times a function equals

the constant times the mean value of the function (cf = ¢ f), prove that the
mean value of (n — 77)? is n2 — 71 (7 is a constant).

. For air at room temperature, the probability that any one molecule is in an

excited electronic state is about 1071° (p = 1071°, ¢ ~ 1). Ina typical room
there are about 10?® air molecules. For this case, calculate

(a) the mean number of excited molecules,

(b) the standard deviation,

(c) the relative fluctuation.

. There are just 30 air molecules in an otherwise empty room. Calculate

(a) the average number that will be in the front third of the room at any time,
(b) the standard deviation about this value,
(c) the relative fluctuation.

. Repeat the above problem for 3 x 10?7 air molecules in an otherwise empty

room.

. Suppose there are 100 ammonia molecules in a room. Find

(a) the average number that are in the front half of the room,

(b) the standard deviation about this number,

(c) the probability that exactly 50 are in the front half of the room at any
instant,

(d) the probability that exactly 53 are in the front half of the room at any
nstant.

. In a certain semiconductor, the probability that an electron jumps from the

filled “valence band” to the empty “conduction band” is 10~1° (i.e., 1 chance
in 10'0). If there are 10?* electrons in the valence band, find
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(a) the average number of electrons in the conduction band at any instant,
(b) the standard deviation for this number of electrons in the conduction
band.

9. In deriving the expression for the standard deviation following equation 3.3
we showed that

— N! 3\’ N!
2 2_ "' n N-n — e v n, N-n
" Z" (N —an P4 (p3p> zn:n!(zv—n)!pq

3\ N
=\ry,) Pt
p
(a) Explain the justification for each of the three steps in this series of equa-
tions.
(b) Derive a corresponding expression for calculating 7.
(c) Evaluate both expressions to show that 7 = Np and 6> = Npq.

Section B

10. Consider identically prepared systems, each having 600 rolled dice. Suppose
we are interested in the number of dice per system that are showing sixes. Find
(a) the average number of sixes per system,
(b) the standard deviation o,
(c) the values of 4 and B in the probability distribution Pgo(n) =

Ae—Bn—n) ,

(d) the probability that exactly 100 of 600 will show sixes,
(e) the probability that exactly 93 of 600 will show sixes.

11. In the above problem, what is the number of different possible combinations
of the dice such that 100 show sixes and 500 do not?

12. In the derivation of the Gaussian form of the probability distribution, Py(n),
we showed, using Inab =1Ina +Inb,Ina/b=1Ina —Inb,Ina’® =blna,
that

NI n_ N—n

=InN!—Inn! —In(N —n)! +nlnp+ (N —n)lng.
(a) Rewrite this expression, expanding all the factorials on the right-hand
side using Stirling’s formula,

1
Inm!'~mlnm —m + Eanﬂm.

(b) Show that

1 1 1 1
InPn=n)=<-In =—-In ,
2 2xNpg 2 2mno?

usingzn = Np,q =1— p,Inab =Ina + Inb.



13.

14.

15.
16.

17.

18.

19.
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(c) Take the derivative of the expression for In P(») in part (a) and drop terms
that go to zero as n gets very large. Then evaluate thisatn =n = Np to
show that & In P(n)| __ =0.

(d) Following a procedure like that in part (c), take the second derivative and

d _ 1 _ 1
show that -~ In P(n)|n=ﬁ =W = ot

(e) Combine these results and the Taylor series expansion to show that
_ 1 o —(n-n)?/20?
Pn) = Nl .

For large systems, we can turn the sum over probabilities for all possible
configurations into an integral, as indicated in equation 3.11. Because the
integrand is nearly zero outside the range (0, N), we can expand the range
of integration to (—oo, +00) with negligible effect and use f_oooo e’ dx =
/7 /a. Do this for the Gaussian approximation and show that this sum is
equal to unity. Why should it equal unity?

You are interested in the number of heads when flipping 100 coins. In the
Gaussian approach, with Py(n) = Ae= By’
constants 4 and B? Find the probability of obtaining exactly the following
numbers of heads: (a) 50, (b) 48, (c) 45, (d) 40, (e) 36.

, what are the values of the

What is the ratio of Py(n =7 o) and Py(n = n)?

Suppose you flip 400 coins many times. Find

(a) the average number of heads per time,

(b) the standard deviation about this value,

(c) the probability that exactly 200 would land heads,
(d) the probability that exactly 231 would land heads.

Imagine that you were to roll 360 dice many times. Find
(a) the average number of sixes showing each time,

(b) the standard deviation around this value,

(c) the probability of getting exactly 60 sixes,

(d) the probability of getting exactly 74 sixes.

Suppose that we have 10 000 spin-1/2 particles, which are either spin up or

spin down. Thermal agitation causes them to flip around, so that any one

particle spends roughly half the time up and half down. On average, at any

instant there will be 5000 up and 5000 down.

(a) What is the standard deviation for fluctuations around this value?

(b) What is the probability that at a given instant there are exactly 4900 up
and 5100 down?

Consider 10000 atoms, each of which has a probability 0.1 of being in an
excited state. Assuming a Gaussian distribution, calculate the probability that
the number of atoms in an excited state is (a) 1000, (b) 100.
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20.

21.

22.

23.

24.

25.

26.

Suppose you roll 180 dice, and you are interested in how many land with six

dots up. Assume that the distribution can be approximated as being Gaussian.

(a) What is the probability that exactly 30 land with six dots up?

(b) According to the Gaussian formula, what is the probability that 181 of
the 180 land with six dots up? (Note that the answer is impossible, which
means that the Gaussian result is technically in error.)

Compare the Gaussian prediction for the probability with the correct
(binomial) result for the following cases:

(a) 1 of 6 dice lands a six,

(b) 3 of 6 dice land sixes,

(c) 0 of 6 dice lands a six.

Compare the Gaussian prediction for the probability with the correct
(binomial) result, for the following cases:

(a) 10 of 60 dice land sixes.

(b) 8 of 60 dice land sixes.

(c) 15 of 60 dice land sixes.

(d) 0 of 60 dice lands a six.

Compare the Gaussian prediction for the probability with the correct
(binomial) result for the following cases:

(a) 10 of 20 coins land heads,

(b) 12 of 20 coins land heads,

(c) 15 of 20 coins land heads,

(d) 2 of 20 coins land heads.

The Gaussian distribution that we derived is of the form Py (n) = Ae=B8="7,
where 4 and B are constants. Suppose that we have for the first derivative in
the Taylor series expansion

n—n

d
n In P(n) ) =e,

where ¢ is small but not zero. What would the corresponding form of Py (n)
be in this case?

You are now going to show that, in the Gaussian distribution P(x) =
Ae™3%* | the constant 4 is equal to «/B/7. (E.g., if B =1/207 then A =
1/+/27¢.) Do this by insisting that the sum over probabilities must equal
unity, [ P(x)dx = 1. To make this difficult integral easier, first square it:
[ P(x)dx [ P(y)dy = 1= 1. Then combine the integrands and turn the area
integral, over x and y into an area integral over polar coordinates. This integral
is easy to do and should give you the desired result.

A certain crystal contains 400 defects, which migrate randomly throughout its
volume. We are interested in how many of these are in the crystal’s top layer,
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which makes up one tenth of the crystal’s total volume. If we approximate

the probability that n of the 400 defects are in this top layer by Py(n) =

AeB=m" find

(a) the numerical value of B,

(b) the numerical value of 4,

(c) the probability of there being exactly 48 defects in the top layer at any
nstant.

Section C

27.

28.

29.

A bunch of “digital drunks” can only take steps of (41, 0, —1) meters in the
x direction. A strong wind is blowing, so the probabilities are not symmet-
rical, being given by P(—1) = 0.3, P(0) = 0.2, P(+1) = 0.5. What are the
average distance gone and the standard deviation for

(a) one step,

(b) 400 steps?

(c) What is the ratio o /5 for one step and for 400 steps?

Consider “digital drunks” as in the previous problem, except that now they
can take steps in one dimension of lengths (0, 1, £2) meters. Suppose that
the probabilities for each of these step lengths are P(—2) = 0.1, P(—1) =
0.1, P(0) = 0.3, P(1) = 0.3, P(2) = 0.2. What are the average distance
gone and the standard deviation for (a) one step, (b) 400 steps? (c) What
is the ratio o /s for one step and for 400 steps?

An ammonia bottle is opened very briefly in the center of a large room,

releasing many ammonia molecules into the air. These ammonia molecules

go on average 10> m between collisions with other molecules, and they
collide on average 107 times per second. After each collision they are equally
likely to go in any direction.

(a) Whatis the average displacement in one dimension (say the z-dimension)
for a single step? (Hint: If one step is of length a, then the z-component
of this step is (a cos ). Averaging any function f over all solid angles
gives f = (1/4r) [ fsin6 d9d¢.)

(b) What is the square of the standard deviation for any one step? (Hint:
o2 = 52 — 52. The second of these terms is the square of that calculated
in part (a). For the other term, see the hint in part (a) for averaging a
function.)

(c) Whatis the average displacement in the z direction of the escaped ammo-
nia molecules after 2 seconds?

(d) What is the standard deviation of the value obtained in part (c)?

(e) If you were on the z-axis and 6 m from the bottle, how long would it
take before more than 32% of the ammonia molecules had positions that
were farther from the bottle in the z direction than you?
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30.

31.

32.

33.

34.

A tiny drop of dye is put in a very still tub of water. The dye molecules travel
about 10~!" m between collisions and undergo about 4 x 10'3 collisions
per second. The direction of any step is completely arbitrary; all directions
are equally probable. For molecular motion in one direction, calculate the
average distance traveled and the standard deviation after (a) one step, (b)
one minute, (c) one year (3.17 x 107 seconds). (Refer to the hints in the
previous problem if necessary.)

A large number of holes at a particular point start to migrate through a
semiconductor that has no external field. After each collision with a lattice
site, a hole is equally likely to go in any direction. Such collisions occur
roughly 10'3 times per second, and the hole goes an average of 3 x 107'0
m between collisions. Using the hints in problem 29, calculate for motion in
any one dimension the average distance traveled and the standard deviation
after (a) one step, (b) one second.

Consider the motion of some electrons in a semiconductor that has an electric
field across it. Suppose that between collisions an average electron goes
107!% m in the direction favored by the field, with a standard deviation of
10~° m. It undergoes 10'* collisions per second. Find the average distance
traveled and the standard deviation after (a) 1 second, (b) 5 minutes. (c)
Suppose that the probability distribution for a single step is of the form
P(x)dx = Ae B6—0)dx. What are the values (with units) of 4, B, and x¢?

You put a voltage across a metal wire and examine the progress of a group

of electrons that begin at a certain point. You notice that after 4 seconds they

have gone an average distance of 0.10 m in the +x direction through the wire

and have spread out to the point where their standard deviation about this

location is 10~3 m. They undergo 10'? collisions per second.

(a) What is the average distance gone in the +x direction between any two
successive collisions?

(b) What is the standard deviation for the average distance traveled between
any two successive collisions?

(c) Ifthe density of conduction electrons is 10?7 m? and the wire has a radius
of 1 mm, what is the electrical current through this wire?

Energy produced in the center of the Sun has a hard time finding its way
out. We can estimate roughly how long it takes an average photon to get
out by looking at the motion in one dimension only. On average, a photon
goes about 1 cm between collisions with hydrogen nuclei or electrons and
undergoes about 10® such collisions per second. (Use the hints in problem
29 if necessary.)

(a) What is the average distance traveled in any dimension per step?

(b) What is the standard deviation about this value?



35.

36.

37.

Systems with many elements

(c) The radius of the Sun is about 7.0 x 10% m. About how many steps must
a photon take before having a 32% chance of being outside the Sun in
this dimension?

(d) To how many years does this number of steps correspond? (1 year =
3.17 x 107 seconds).

Imagine that there is a brief radiation leak at a nuclear power plant. The
radioactive gas molecules have an average speed of 360 m/s and a mean
free path (i.e., an average distance between collisions) of 3 x 10> m. The
root mean square step length, projected in any one direction (e.g., in the x
direction) is 1.73 x 1073 m. Suppose that this leak happens to occur when
the air is perfectly still, with no turbulence or other mixing at all. What is
the characteristic radius of the radioactive cloud after 1 minute, 1 hour, and
1 day?

Consider the expression (s; 4 s2 + 53 + - - - + sy)°. By writing out the terms
explicitly, show that there are (i) N? terms altogether, (ii) N squared terms,
and (iii) N(N — 1) cross terms for (a) N = 2, (b) N = 3.

Given that o3 = g — Sy whereg = Ns2 + N(N — 1)s> and Sy = N,
show that 0} = No?, if 5 and o are the average distance traveled and the
standard deviation for one step.
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A The general idea

Our investigations of larger systems begin with their internal energy, which
involves the relative motion and interactions among the system’s own particles. It
does not include interactions with or motion relative to objects outside the system.
The internal energy of a nail, for example, would include the energy of vibra-
tion of the atoms and the motions and interactions of the conduction electrons
(Figure 4.1). But it would not include the nail’s potential energy or motion relative
to the Earth, for example. Of course, if you enlarge the system to include both the
Earth and the nail, then these would be part of the internal energy of this larger
system, but they are not part of the internal energy of the nail by itself.

B Potential energies

We now examine the energies of the individual particles in solids, liquids, and
gases, by means of models that are useful in developing intuition for these systems.

B.1 General thoughts

Imagine a particle that is anchored in place by interactions with its neigh-
bors. We can use a Taylor series expansion (Appendix B) to write its potential
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Figure 4.1 (a) The
internal energy of a nail
includes such things as
the vibrations of the iron
atoms and the potential
and kinetic energies of
the conduction electrons.
(b) If the nail were thrown
over a cliff, its motion
relative to the Earth and
its potential energy due to
the Earth’s gravity would
not be part of its internal
energy, because they
involve more than just the
nail itself.
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(a) (b)

energy u(x) (Figure 4.2) as a function of the displacement x from its equilibrium
point:
1 d’u

X+

du
x=0 2 d.X2

dx

xZ

x=0

u(x) =u(0) +

The first derivative is zero, because the potential energy is a minimum at equi-
librium. For sufficiently small values of x, terms of order x> and higher can be
ignored, so we can write the particle’s potential energy as

u(x) ~ ug + %sz, 4.1

where uy = u(0) and « are the potential energy and its second derivative at the
equilibrium point, respectively. We get similar expressions for displacements in
the y and z dimensions, so each anchored particle is a tiny harmonic oscillator in
all three dimensions.

u(x)

Figure 4.2 Plot of potential energy versus x for an arbitrary potential energy
function for a particle. Near any relative minimum, at which we can choose x= 0,
the potential is parabolic, i.e., u(x) ~ ug + (1/2)xx? for small displacements x. This
can be shown mathematically by using a Taylor series.
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u(x) u(x) u(x)

(a) (b) ©)

Figure 4.3 The potential energy of a particle due to just one neighbor. We can
imagine that one particle is anchored at the origin and the other is coming from
infinitely far away. It is convenient to think of the particle and its potential energy as
a ball on a hill. (a) When the forces are repulsive, the particle must go “uphill”
against these repulsive forces, and its potential energy is positive. (b) When forces
are attractive, the incoming particle is going ““downhill” and its potential energy is
negative. Plot (c) is typical for the interactions between most atoms and molecules -
weakly attractive at long ranges but strongly repulsive at very short ranges, where
their electron clouds overlap. If the interactions were repulsive at all ranges, as in
plot (a), the particles of the system would all fly apart unless they were confined
under pressure in some container.

The depth of the potential well u,' depends on the strength of the interactions
(Figures 4.3, 4.4). Because these interactions depend on the motions and spacings
of the particles (Figure 4.5), uy depends on temperature, pressure, and particle
concentration:?

uy = uo(T, p, N). 4.2)

For gases u is nearly zero, because on average the molecules are far apart and
their mutual interactions are negligible. For most solids, u is negative and nearly
constant, because the atoms are bound to one another and the interatomic spacing
changes only very slightly with large changes in temperature and pressure.

In liquids, however, the molecules are both mobile and close together. At low
temperatures, they move more slowly and have time to seek the preferred orienta-
tions of lower potential energy. At higher temperatures, the increased molecular

Potential energies can be measured relative to any arbitrary reference level, but the standard con-
vention is that the potential energy is zero when a particle is all by itself and not interacting with
anything else. Using this convention, u¢ is negative when particle interactions are attractive, and
positive when they are repulsive.

2 If there is more than one type of particle, we would have to specify the number of each: N —
Ni,Na, ...
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Figure 4.4 The potential
energy of a particle due to
two neighbors. In any one
dimension, the combined
potential energy of the
particle (solid line) is the
sum of that due to the
particles on its left and on
its right (broken lines).
(Top) If the interactions
are repulsive, w is
positive. (Bottom) If the
interactions are attractive,
Up is negative.
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speeds and randomized motions tend to reduce their time in such preferred ori-
entations, so the potential wells become shallower. As heat is added to liquids,
then, not all goes into the motions of the particles. Some goes into raising uy.
This extra avenue for storing energy gives liquids correspondingly larger heat
capacities.

The depth of the potential well u(y may change abruptly at phase transitions if
there are large changes in interparticle spacing and/or interactions.

B.2 Solids, liquids, and gases

In a solid, the individual atoms are held in place by electromagnetic interac-
tions with neighboring atoms as if they were bound in place by tiny springs
(Figure 4.5). Each atom vibrates in all three dimensions around its equilibrium
position, and its energy is given by

& = Epotential ~+ Exkinetic

1 2 1 2 1 2 1 2 1 2 1 2
= - - - — P4 —p + —pl 43
u0+2/<x +2/<y —|—2Kz +2mpx+2mpy+2mpé 4.3)
It can be seen that epgeniial is made up of two parts, the potential energy reference
level u and the potential energy of vibration. Some solids are not isotropic, and
then the constants x may be different in different directions.
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high concentration solid

In liquids, the potential energies of the mobile molecules fluctuate rapidly as
the configurations of the other molecules around them change. So the potential
energy reference level u is an average or “mean field” value, and the total energy
of a molecule in a liquid can be written as

1 1 1
& = Epotential T Ekinetic = Uo + EP% + %P‘z + EPZ 4.4
In gases, neighboring particles are usually so far apart that interactions are
negligible. So, for most cases, the potential energy is minuscule and we can treat
a particle’s energy as purely kinetic:
1 2 1 2

£ = Ekinetic = o P +5-p,+ — L. 4.5)

C AQuantum effects
C.1 Rotations and vibrations

Collisions with other molecules might cause polyatomic molecules in a liquid
or gas rotate and/or vibrate internally. This would provide additional modes of
energy storage beyond the potential energies and translational kinetic energies
discussed in the preceding section:

€ = Epot ~+ Etrans + Erot + Evin- (46)

The fact that, according to quantum mechanics, particles behave as waves puts
restrictions on the allowed energies, which one particularly evident in molecular
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Figure 4.5 (Left) The
depth of the potential well
up (Figures 4.4, 4.7)
depends on the motions
and spacings of the
molecules, which change
with temperature and
pressure. (Right)
Interactions among
neighboring atoms in
solids make them behave
as if they were connected
together by tiny springs.
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Figure 4.6 A diatomic
gas molecule is like a little
dumbbell. It can store
translational kinetic
energy by moving in all
three dimensions. But it
can rotate around only
two axes. The rotational
inertia around the third
(the x-axis in this figure) is
so small, that the energy
of even the first excited
state is too high to reach.
Normally, it can store no
energy in vibrations,
because the excitations
require too much energy.
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translation: L P2+ vaz + ]—p,z
2m m - 2m

y y

. 1 > ) - L 2 K >
rotation:  — Ly + — L7 vibration:  —— Pret” + — Xrel
2 21 2u 2

vibrations. Molecular binding puts each atom in a potential well that is a fraction
of an angstrom wide. Therefore, the wavelengths of the standing waves are short
(subsection 1B.8, Figure 1.9), corresponding to energies so high that vibrational
excitations are usually not possible at normal temperatures.>

Similar quantum effects also appear in molecular rotations. As we saw in sub-
section 1B.6, angular momentum L is quantized in terms of 7. Kinetic energies
for rotations around any axis are inversely related to the rotational inertia /. For
rotations around the ith axis,

1
St = = L2, where L; = (0, £1, £2.. )7

7 4.7)

(Because we can only know the exact value of L; for one axis at a
time, it is sometimes more convenient to use the total angular momentum,
L =11+ 1)%%)

The smaller the rotational inertia, the larger the energy of the first excited
rotational state. Sometimes the rotational inertia around one or more axes is so
small that excitation requires more energy than is available through molecular
collisions. So these particular rotational motions do not occur.

3 No energy can be extracted from the “zero point motion” (Section 1B.8), because there is no lower
state for the particle to fall into. We often measure energies relative to this level, calling this “the
state of zero energy.” Energy can only be stored by excitations into higher levels.
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C.2 Example - the diatomic gas molecule

As a specific example, consider diatomic gas molecules, such as nitrogen or oxy-
gen. The translational kinetic energy is as given in equation 4.5 and, as discussed
above, the vibrational levels are too high to be accessible. The rotational kinetic
energy is particularly interesting, however, because the rotational inertia of a
diatomic molecule about the axis going through both atomic nuclei is very small,
and so the corresponding rotational excitations would require too much energy.
Around the other two molecular axes, however, the rotational inertia is much
larger, making these rotational states more accessible at ordinary temperatures.
With these considerations for the rotational modes, we can write the total energy
of a typical diatomic molecule as (Figure 4.6)

= + _ 2+—1 2+—1 2+—1 L2+—1 L2 (4.8)
& = Etrans Erot = v ; .
trans o =5 Px m Py 5 P A YA

D Degrees of freedom

In all the examples above, the energies of individual particles are of the form
e=uo+ Y bE 4.9)

where the b; are constants (e.g., x/2, 1/2m, 1/21, etc.) and the &; are position
or momentum coordinates (x, p,, L, etc.) Each of these b; Sf terms represents a
distinct way in which a particle can store energy, called a “degree of freedom.”
For example, each atom in a solid has six degrees of freedom, because there are
Six b; él.z terms in equation 4.3. For the diatomic gas molecule of equation 4.8 there
are five such terms, so each diatomic gas molecule has five degrees of freedom.

In this book, we use the standard notation, whereby v represents the number
of degrees of freedom per particle and N represents the number of particles in
the system:

degrees of freedom per particle = v .10)
degrees of freedom for a system of N particles = Nv. '

E Equipartition

Consider the distribution of energy between the various degrees of freedom. In
collisions there is a tendency for energy to be transferred from the faster particle
to the slower one, so the energies even out. (Think of collisions on a pool table.)
From our studies of harmonic oscillators in introductory physics courses, we
know that the average potential and kinetic energies are the same. So terms like
kx?/2, and p?/2m carry equal energies when a average is taken. Finally, motion
in all three directions is equally likely, so the average kinetic or potential energies
in the x, y, and z directions must all be equal.
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Figure 4.7 lllustration of
the average energy per
particle £ and the average
thermal energy per
particle, &hermal, for
particles in potential
wells. The thermal energy
(wiggles and jiggles) is
measured relative to the
potential energy
reference level up.
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V(x)

For these reasons, it should not be surprising that the average energy stored in
each degree of freedom is the same. This is known as the “equipartition theorem.”
We will prove it in a later chapter, where we will also show that if the energy
expression for a particular degree of freedom is of the form b;£? (equation 4.9),
then the average energy stored in this degree of freedom is given by

1
g= kT 4.11
F=3 (.1

where T is the temperature and k& is Boltzmann’s constant:
k=1.381x10""J/K =8.63 x 107 eV/K.

Although we will soon give temperature a more formal definition, we can see
from 4.11 that it measures the average energy stored in each degree of freedom.

F Thermal energy

The “thermal energy” of a system is taken to be the energy stored in the wiggles
and jiggles of its particles and does not include the potential energy reference
level u (Figure 4.7).* The energy of a single atom in a solid can be written as
(equation 4.3)

rerr by bz Lpy Lppy L
E=u —KX =K —K -— -— -— .
°T 3 2 T T g P g P T g =

Ethermal

Since each degree of freedom carries an average energy of k7 /2 (equation 4.11),
the average thermal energy of an atom in a solid is Epermar = 6kT /2.

4 In liquids the distinction between the reference level and thermal energy is more difficult. As we have
seen before, continually changing motions and orientations between neighboring molecules cause
rapidly changing potential energies. So in liquids the u reference level represents a time-averaged
mean feild value for a molecule’s potential energy and is sensitive to temperature.
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Generalizing this example, the average energy of a particle in any system can
be written as

T=up+ %kT, (4.12)

where v is the number of degrees of freedom, and the internal energy of a system
of N such particles is

_ Nv
E = N& = Nug + —-kT. (4.13)
The “thermal energy” Eerm Of the system is the second term in 4.13:
Nv
Etherm = Ngtherm = TkT

you can see that the thermal energy is stored in the various degrees of freedom,
and is proportional to the temperature.

Notice that if we add energy AE to a system of N molecules then the rise in
temperature AT depends on the number of degrees of freedom per molecule, v:

Nv
AE = NAug + TkAT (4.14)

As we have seen, Auy ~ 0 for most solids and gases, so by measuring the
increase in temperature AT when energy AE is added, we can usually deter-
mine the number of degrees of freedom per molecule. For liquids, however, ug
increases with temperature and acts like additional degrees of freedom for energy
storage.

At phase transitions we may add large amounts of heat to a system, without
any change in temperature. Where does this added energy go? According to
equation 4.13, we can see two possibilities: since N and T are constant, only u( and
v can change. There is always a change in 1, during a phase transition, because
molecular arrangements in the new phase are different, resulting in different
potential energies. The number of degrees of freedom per molecule, v might also
change, because the change of phase could change the constraints on the motions
of the individual molecules.

Summary of Chapter 4

Internal energy is the energy stored in the motions and interactions of the particles
entirely within a system. The interactions between neighboring particles gives rise
to potential energies. The reference level from which potential energies are
measured is given the symbol u,. In solids, the atoms are anchored in place by
electromagnetic interactions with their neighbors. They oscillate around their
equilibrium positions as tiny harmonic oscillators. The molecules in liquids are
fairly free to roam through the liquid. In most gases the potential energy is nearly
zero, owing to minimal interactions with the distant neighbors. If the interactions in
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a system are predominantly attractive then u is negative, and if they are

predominantly repulsive then u is positive.

In the detailed energy equation, each term that involves a position or momentum

coordinate represents a “degree of freedom.” Such terms normally have the form

b&?, where b is a constant and £ is a coordinate. The fact that energies are quantized

may limit the number of degrees of freedom available to a particle because, for some

cases, even the first excited state might require too much energy.

On average, the internal energy of a system is distributed equally between all

degrees of freedom. The average energy per degree of freedom is proportional to the

temperature (equation 4.11):

where

k=1.381x 1072 J/K (Boltzmann’s constant).

The thermal energy of a particle is carried in its various degrees of freedom and

is measured relative to the potential energy reference level u.> If there are v degrees

of freedom per particle then the average energy per particle and the total internal

energy of a system of N such particles are given by (equations 4.12, 4.13)

Vv
£ = U + EkT
and
_ Nv
Problems
Sections A and B
1. Give examples of types of energy that would be part of your body’s internal

energy, and of types of energy that would not, unless the system were enlarged
to include your environment.

Consider the average potential energy of a water molecule in an ice crystal
and of one in the liquid state. Which is lower? How do you know?

(a) Show that the function f(x) = x>+ x> —2 has a local minimum at
x = 0. (Hint: Show that the first derivative is zero and that the second
derivative is positive at x = 0.)

(b) Expand this function in a Taylor series around the point x = 0, up to the
fourth-order term (the term in x*).

5 The situation in liquids is a little different, as discussed earlier. See also footnote 4.



Internal energy

(c) If we keep terms only to order x2, what is the range in x for which our
error is less than 10%?

. Repeat the above problem for the function f(x) = —e.

. Expand the functions sinx, cosx, In(1 4+ x), and e* to order x* in Taylor

series expansions around the origin. Do you see any pattern in these expan-

sions that would allow you to continue the expansion to any order? Write out

each of these infinite series in closed form.

(E.g., sinx = ; %xz"“.)

. We are going to make a very rough estimate of how much pressure must be

applied to a typical solid to compress it to the point where the potential energy

reference level u( of the individual atoms becomes positive. Ordinarily, for

a typical solid, ¢ is around —0.2 eV.

(a) If the interatomic spacings are typically 0.2 nm, how many atoms are
there per cubic meter?

(b) Roughly, how much work (in joules) must be done on one cubic meter
of this solid to raise u( to zero? (Hint: You have to raise the potential
energy per atom by about 0.2 eV.)

(c) Work is equal to force times distance parallel to the force (Fdx) but, by
multiplying and dividing by the perpendicular surface area, this can be
changed into pressure times volume (—pdV’). Because solids are elastic,
the change in volume is proportional to the change in applied pressure,
dV = —Cdp, and the constant C is typically 10~!"m’/N. With this back-
ground, calculate the work done on a solid as the external pressure is
increased from 0 to some final value py.

(d) With your answer to part (c) above, estimate the pressure that must be
exerted on a typical solid to compress it to the point where u( becomes
positive (Figure 4.4, top right).

(e) What is a typical value for the variation of uy with pressure, duy/dp, at
constant temperature and atmospheric pressure in a solid?

. Consider the following three systems: (A) the water molecules in a cold soft
drink, (B) the copper atoms in a brass doorknob, and (C) the helium atoms
in a blimp (a small cigar-shaped airship). Below are listed expressions of the
energy for an atom in each system. In each case, fill in the blank with the
letter of the most appropriate system.

1 1 1 1 1 1
_ 8=u0+—KX2+—Ky2+—KZ2+—pi-i——p;—f——pzz

2 2 2 2m 2m 2m
| SR S S
= — _ _
2m P T o Py T o Pe

1 1
— e=ut 5Pt Pt 5P
2m m m
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Section C

8.

10.

11.

We are going to estimate the vibrational energy of the first excited state for
a nitrogen molecule (N;). Each atom finds itself in a potential well due to
its interactions with the other atom. This potential well is roughly 0.02 nm
across.

(a) What are the wavelengths of the longest two standing waves that would
fit in this well?

(b) What momenta do these correspond to?

(c) Considering kinetic energy only, how much energy in eV would be
required to excite an atom from the ground state to the first excited
state? (The mass of a nitrogen atom is 2.34 x 10720 kg.)

(d) To estimate the minimum temperature needed for excitations to occur,
we compare kT (where k = 1.38 x 10723 J/K = 8.63 x 107> eV/K) with
the energy required to reach the first excited state. Roughly what is the
minimum temperature needed for vibrational excitations in nitrogen gas?

. Consider the rotation of diatomic molecules around an axis that runs per-

pendicular through the midpoint of the line that joins the two atoms (see

Figure 4.6). The mass of a nitrogen atom is 2.34 x 10726 kg, and the inter-

atomic separation in an N, molecule is 1.10 x 1071 m.

(a) What is the rotational inertia of an N, molecule around this axis?
(I =Y mr?)

(b) Find the energy in eV required to excite this molecule from the non-
rotating state to the first excited rotational state (i.e., from/ = 0to/ = 1,
where L2 = [(I + 1)7?).

(c) What is the minimum temperature for rotational excitations in nitrogen?
See problem 8(d).

Repeat problem 9 for an oxygen molecule, O,, given that the mass of an
oxygen atom is 2.67 x 1072 kg and the interatomic spacing is 1.21 x
10719 m,

Repeat problem 9 for a hydrogen molecule, given that the mass of a hydrogen
atom is 1.67 x 10727 kg and the interatomic spacing is 7.41 x 10~!! m.

Section D

12.
13.

14.

How many degrees of freedom has a sodium atom in a salt crystal?

Why do you suppose that, at high temperatures, a molecule of water vapor
(H,0O) has three rotational degrees of freedom and a molecule of nitrogen
gas (N) has only two?

Assuming that a conduction electron in a metal is free to roam anywhere
within the metal (not being constrained to any small region by a particular
well), how many degrees of freedom does it have?



15.

16.
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Consider the phase change for iron from solid to liquid forms.

(a) How many degrees of freedom does each iron atom have in the solid
state?

(b) After it has melted?

(c) Did the number of degrees of freedom of the conduction electrons
change?

(d) Did the number of degrees of freedom of the whole system increase or
decrease?

(e) On a microscopic scale, what happens to the energy put into the iron to
melt it?

The heat capacities of some diatomic gas molecules show that they have
three degrees of freedom at very low temperatures, five degrees of freedom
at intermediate temperatures, and seven degrees of freedom at very high
temperatures. How would you explain this?

Sections E and F

17.

18.

19.

20.

Estimate the molar heat capacity of a diatomic gas with five degrees of
freedom per molecule, by calculating how many joules of energy must be
added to raise the temperature by 1 °C. (Assume that the volume is constant,
so that only heat is added and no work is done.)

(a) Make an estimate of u( (in eV) for a water molecule in the liquid state
at 100 °C. Assume that there are six degrees of freedom per molecule in
both the liquid and the vapor states and that 2260 kJ of energy per kg are
released when it condenses. Ignore any work done on the molecule due
to the change in volume.

(b) What is the average thermal energy per molecule?

(c) What is the average total energy per molecule for liquid water at 100 °C?

At 0 °C, a water molecule in both ice and liquid water has six degrees of

freedom. One mole of water has mass 18 grams and a latent heat of fusion

equal to 6025 joules per mole. Given this information, calculate the following

in units of eV:

(a) the average thermal energy per molecule in liquid water at 0 °C and in
ice at 0 °C,

(b) the amount of energy per molecule added in making the phase change,

(c) the change in the potential energy reference level u( in going from the
solid to the liquid state.

Does the water’s thermal energy increase, decrease, or remain the same as

ice melts?

Using equipartition, calculate the root mean square value of the following
quantities in a gas at room temperature (295 K).
(a) The speed of a nitrogen molecule (m = 4.68 x 10726 kg).
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21.

22.

(b) The speed of a hydrogen molecule (m = 3.34 x 10~% kg).

(¢) The angular momentum of a diatomic oxygen molecule around one
of the two rotational axes, for which its moment of inertia is 1.95 x
1074 kg m?.

(d) If the axis in part (c) is the z-axis, what would be the root mean square
value of the quantum number /,?

What is the total thermal energy at room temperature (293 K) in a gram of
(a) lead, (b) dry air (78% N, 21% O, 1% Ar)?

You are climbing a mountain and you and your equipment weigh 700 N.
Suppose that of the food energy you use, one quarter goes into work (getting
you up the mountain) and three quarters into waste heat. Half the waste heat
goes into evaporating sweat. For every kilometer of elevation that you gain,
how many kilograms of food do you burn, and how many kilograms of water
do you lose? (Very roughly, food provides 4 x 10° J/kg, and the latent heat
of evaporation at the ambient temperature is about 2.5 x 10° J/kg.)
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Energy can be transferred between systems by the following three mechanisms

* the transfer of heat AQ;
* the transfer of work AW (i.e., one system does work on another);
* the transfer of particles AN.

These are called thermal, mechanical, and diffusive interactions, respectively (see
Figure 5.1). The first three sections of this chapter introduce these interactions
in a manner that is intuitive and qualitatively correct, although lacking in the
mathematical rigor of the chapters that follow.

A Heat transfer - the thermal interaction

In the preceding chapter we learned that thermal energy gets distributed equally
among all available degrees of freedom, on average. So the energy of interacting
systems tends to flow from hot to cold until it is equipartitioned among all degrees
of freedom. The energy that is transferred due to such temperature differences is
called heat, and it travels via three distinct mechanisms: conduction, radiation,
and convection.

Conduction involves particle collisions (Figure 5.2a). On average, collisions
transfer energy from more energetic particles to less energetic ones. Energy flows
from hot to cold.
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Ag Ao Ag

A2 A2
.".241:

thermal mechanical diffusive

Figure 5.1 Pictorial representations of thermal, mechanical, and diffusive
interactions between systems. The combined system, Ag = A + A, is completely
isolated from the rest of the Universe.

hot cold

water waves

electromagnetic waves

(a) (b)

Figure 5.2 (a) Conduction: collisions transfer energy from particles with higher
kinetic energies to those with lower kinetic energies, on average. (b) Radiation,
illustrated by toy boats in a bathtub. As one is jiggled up and down, it sends out
waves which cause other toy boats to bob up and down as they pass by. Similarly,
accelerating electrical charges generate electromagnetic waves, which radiate
outward and transfer energy to other electrical charges that they encounter.

Energy transfer via radiation can be illustrated by toy boats in a tub.
(Figure 5.2b). If one is jiggled up and down, it sends out waves. Other toy boats
will oscillate up and down as these waves pass by. In a similar fashion (but at
much higher speeds), electromagnetic waves are generated by accelerating elec-
trical charges, and this energy is absorbed by other electrical charges that these
waves encounter.
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Owing to the thermal motions of particles, all objects both radiate energy
into their environment and absorb energy from their environment. Hotter objects
radiate energy more intensely due to the more energetic motion of their particles.
Therefore, there is a net transfer of radiated energy away from hotter objects
towards cooler ones.

Heat transfer by convection involves the movement of particles from one point
to another. A system gains the energy of particles that enter and loses the energy
of particles that leave. Examples of convection include all fluid motions. Within
solids, mobile conduction electrons also engage in heat transfer via convection.
(How does this differ from the diffusive interaction? We’ll soon find out.)

B Work - the mechanical interaction

Another way to increase a system’s internal energy is to do work on it, dW =
F - ds; for example, if you compress a gas then its temperature rises. Some sort of
external force must cause a displacement of the system’s particles.! It is customary
to use the symbol AW for work done by the system. Since forces come in equal
and opposite pairs,

work done by the system = —work done on the system. 5.1

Whereas AQ represents heat added 7o the system, therefore increasing its internal
energy, AW represents work done by the system (i.e., against the external force F),
therefore decreasing the internal energy.? Combining both types of interactions
we have, for the change in internal energy,

AE =AQ — AW (thermal and mechanical interactions) 5.2)

It is sometimes convenient to write the product of force times displacement
in other ways. Examples include:

dW = Fdx (an external force F pushing over a distance dx)

dw = pdV (an external pressure p forcing a change in volume d V')
dW = —-B-dp (a magnetic field B causing a change in magnetic moment )
dW = —E-dp (an electric field E causing a change in electric dipole moment p)

(5.3)

All have the same general form. We normally use pdJV as the prototype. Any
change dV, du, dp, etc., means that particles within the system have moved
because of the external force. Therefore work has been done and kinetic energies
have changed.

I Why couldn’t a displacement due to an internal force cause a change in the internal energy?

2 This sign convention reflects early interest in the conversion of heat (input) to work (output) by
engines. The name “thermodynamics” and much of the early progress in the field can be traced to
these studies.
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Figure 5.3 (a) When a
particle collides elastically
with receding particles or
boundaries, it loses
kinetic energy. So, as a
system under pressure
expands the molecules
lose energy. (b)
Conversely, elastic
collisions with
approaching particles or
boundaries cause an
increase in kinetic energy.
So, as a system under
pressure is compressed
its molecules gain energy.

Introduction to thermodynamics and statistical mechanics

How can the internal energy of a system increase when the displacement of
particles due to external forces causes a decrease in their potential energies? The
answer is that potential energies relative to external forces are not part of the
internal energy of a system, but the increased kinetic energy is part of it.

If the system is expanding, there is a tendency for each particle to collide
with things moving outward, be those other particles or receding boundaries.
Collisions with receding objects cause a loss in kinetic energy (Figure 5.3a).
Conversely, when a system is being compressed, collisions with things moving
inward cause the kinetic energy to grow (Figure 5.3b). Therefore the expansion
of systems under pressure causes a decrease in internal energy, and compression
causes an increase. You may wish to speculate (homework) about systems under
tension rather than pressure.

Summary of Sections A and B

The transfer of energy between systems is accomplished in any or all of three ways:
the exchange of heat, work, and/or particles. These are referred to as thermal,
mechanical, and diffusive interactions, respectively. Heat tends to flow from hotter
to colder until temperatures are equalized.

The exchange of heat is accomplished through conduction, radiation, or
convection. Conduction involves collisions between particles. Radiation involves the
emission of electromagnetic waves by accelerating charges and the absorption of
this energy by charged particles that these waves encounter. Convection involves
energy transfer of particles as they enter or leave a system.

Work is achieved by the action of a force over a distance. Many different kinds of
force may act on a system, but the work done has the same general form — the
product of an external force and the change in the conjugate internal coordinate. It is
customary to use pdV as the prototype for mechanical interactions.

AQ represents heat added fo the system, and AW represents work done by the
system. Therefore (equation 5.2)

AE = AQ - AW (thermal and mechanical interactions).
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C Particle transfer — the diffusive interaction
C.1 The chemical potential

We now examine the diffusive interaction. When particles enter a system they may
carry energy in different ways, two of which we have already encountered: heat
transfer and work. Any energy transfer that is not due to either of these mecha-
nisms is described by the “chemical potential” u as follows. When AN particles
enter a system, the energy delivered via this third mechanism is given by

AE = nAN (diffusive interaction only; no work or heat transfer).  (5.4)

To understand this term, we first review the two types of energy transfer that
are excluded. As you well know, work is the product of force times distance.
Perhaps, though, you have not yet encountered a formal definition of heat. Two
important aspects of heat that will be introduced and quantified in future chapters
are the following.

(1) A heat input increases the number of states accessible to a system.? (You might think
of this as allowing the particles more ways to wiggle and jiggle.)

(2) As we will learn in subsection 9B.1 (equation 9.6), there are three different ways in
which heat (A Q) may enter or leave a system. Only one of these is the familiar or
thermal interaction. For the other two mechanisms, it is not necessarily true that the
heat lost by one system is equal to that gained by the other (that is, dQ; # —dQ,).

When a particle goes from one system to another, it experiences a new envi-
ronment and new interactions (e.g., it might fall into a deeper potential well that
releases kinetic energy to the new system). This will change the number of states
accessible to the system, so heat (A Q) will be gained or lost. Note that this is
not due to temperature differences between the two system, so it is not part of the
thermal interaction. Rather it is due to the new environment that the transferred
particle experiences. Also note that if the environments of the two systems dif-
fer, then the heat lost by one system will not be the same as that gained by the
other.

To quantify this idea, consider the transfer of AN particles from system 4,
to system A4; (Figure 5.1, on the right). For simplicity, we exclude thermal and
mechanical interactions by assuming either that both systems are insulated and
rigid or both are at the same temperature and pressure. Combining equations 5.2
and 5.4 for the change in internal energy of the two, we have

AE, =AQ, + AN (AN particles enter region 1),
AE, = AQ; — AN (AN particles leave region 2).

3 We will find that the heat entering a system is directly proportional to the increase in entropy, which
is a measure of the number of states that are accessible to the system.
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Figure 5.4 When forces
between particles are
attractive, a new particle
entering the system falls
into a potential well, like a
boulder falling off a cliff.
And just as the boulder’s
kinetic energy is
transferred to the dust
and debris on the valley
floor, so is the kinetic
energy of the incoming
particle transferred to
others.
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Adding the two together and using energy conservation (AE; + AE; = 0), we
have

0=(AQ:1+AQ2)+ (1 — H2)AN.

AQo energy transferred by
the diffusive interaction

This shows how the energy transferred by the diffusive interaction relates to the
net amount of heat AQ, that is released or absorbed.

Suppose, for example, that ;1 < u, so that the particles’ chemical potential
decreases as they enter their new environment. The above equation tells us that
heat will be released (AQ, > 0). That is, a decrease in chemical potential cor-
responds to the release of heat. As we saw above, the release of heat increases
the number of accessible states, and this increase may happen in either or both
of two distinct ways (see equation 1.4):

(1) an increase in the accessible volume in momentum space, V,;
(2) an increase in the accessible volume in coordinate space, V.

The first happens when particles entering a new system fall into deeper poten-
tial wells, owing to their interactions in the new environment. The loss in potential
energy produces a corresponding gain in kinetic energy, hence a larger accessible
volume ¥, in momentum space. For example, think of the heat released when
concentrated sulfuric acid is mixed with water, or think of what happens to the
individual atoms when hydrocarbons are burned.

The second happens when particles move into regions where they have more
room and hence a larger accessible volume V. in coordinate space. For example,
they might move to regions of lower concentration or into an evacuated chamber
(“free expansion”).

C.2 Particle distributions

In our macroscopic world, systems seek configurations of lower potential energy.
Rocks fall down (Figure 5.4). A boulder that has fallen to the valley floor would
never jump back out. Things are different in the microscopic world, however, due
to the thermal motions of the particles. The smaller the particle, the more violent
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the motion. Particles are continually jumping back out of wells into which they
have fallen.

These thermal motions cause particles to flow towards regions of lower con-
centrations, simply because there are more particles in the region of higher con-
centration ready to move out than there are particles out in the region of lower
concentration ready to move back in.

Consequently, when a system is in equilibrium, the two considerations that
govern the particle distribution are that they tend to move towards regions of

* lower potential energy
* lower concentration

As you might infer from the preceding section, the chemical potential x of equa-
tion 5.4 is the appropriate measure of these two tendencies. Although the details
of this measure will be developed in Chapter 14, for now we can think of it as
follows:

1 depends on: 1. depth of the potential well and 2. particle concentration.  (5.5)

Deeper potential wells and smaller concentrations mean smaller (i.e., more neg-
ative) values for the chemical potential.

Because particles seek configurations that minimize these two factors, the
chemical potential governs diffusive interactions in the same way that temperature
and pressure govern thermal and mechanical interactions, respectively. Particles
flow towards regions of lower chemical potential, just as heat flows toward regions
of lower temperature, and movable boundaries move toward regions of lower
pressure. The underlying principle for all these interactions is the “second law of
thermodynamics” (Chapter 7), whose consequences are so familiar that we call
them “common sense.”

The configuration of lowest chemical potential usually involves a compromise
in trying to minimize both potential energy and particle concentration; a gain
in one area may be offset by a reduction in another. So, in the microscopic
world, we may find some particles in regions of higher potential energy, albeit
in correspondingly lower concentrations. An example is the water vapor in our
atmosphere. The potential energy of a water molecule in the liquid phase is much
lower because of the strong interactions between closely neighboring molecules:

U, liquid ~ —0.4 €V,

uO,vapor ~ 0

If water sought the configuration of lowest potential energy, all water molecules
would be in the ocean. None would be in the atmosphere.

Now consider the evaporation of water into dry air. Initially ftyapor < Hiiquids
owing to the very small concentration of water molecules in the vapor phase (see
equation 5.5). The molecules diffuse toward the lower chemical potential — that
is, the water evaporates. But as the concentration in the vapor phase increases, its
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Figure 5.5 When a salt ion or molecule enters a solution, it falls into a potential well
owing to the electrostatic attraction between it and the oppositely charged parts of
neighboring water molecules. As more salt is added, the potential well’s depth
decreases, because there are fewer remaining free water molecules with which it
can interact. Furthermore, the concentration of the dissolved salt increases. Both the
raising of the potential well and the rising concentration cause the chemical
potential of the dissolved salt to rise, eventually reaching that in the crystalline salt.
At this point the solution is saturated and there will be no further net transfer of salts
between the two.

chemical potential rises accordingly. When fiyapor Tises to the point where it equals
Miiquid> diffusion in both directions is the same and so the net evaporation stops.
For molecules leaving the liquid phase, the decrease in particle concentration is
no longer enough to offset the increase in potential energy. The air has become
“saturated,” and the two phases are in “diffusive equilibrium.”

A similar thing happens as a crystalline salt dissolves in water, as illustrated
in Figure 5.5. Other examples are the electronic devices that rely on the diffusion
of electrons across p-n junctions into regions of lower concentration and higher
potential energy. If there were no diffusion the devices would not work.

We do not see this same behavior in the macroscopic world, where thermal
motions are minuscule. For large objects, potential energies rule and thermal
motions are irrelevant. But things are different in the microscopic world, owing
to the random thermal motion of the atoms and molecules. This motion is the
reason for diffusion — why gases expand to fill their containers, why not all water
molecules are in the ocean, etc. It has a firm statistical basis, which we will
quantify in later chapters.

C.3 Particle transfer and changes in temperature

When particles fall into deeper potential wells, the potential energy lost is con-
verted into increased thermal energy and the temperature rises (Figure 5.6). This
happens when water condenses or a fire burns. Conversely, when particles dif-
fuse into regions of higher potential energy, the thermal energy decreases and the
temperature falls.
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(a) (b) (©)

Figure 5.6 (a) Water molecules, which are electrically polarized, attract each other
strongly. (b) So a water molecule falls into a potential well and releases thermal
energy as it joins the liquid state. (c) In ice, reduced thermal motion allows the water
molecules to maintain arrangements that reduce their potential energy still further
by keeping like charges close, so additional thermal energy is released as water
freezes.

Summary of Section C

A system’s chemical potential © measures the average change in internal energy per
entering particle that is not due to the transfer of heat or work. For AN entering
particles (equation 5.4),

AE = nAN (diffusive interaction only — no work or heat transfer).

There are two sources for this energy: changes in potential energy due to particle
interactions, and changes in particle concentrations (equation 5.5):

1 depends on: 1. depth of potential well and 2. particle concentration.

We will quantify these two aspects in a later chapter. Particles seek regions of lower
chemical potential since interparticle forces favor configurations of lower

potential energy and thermal motion tends to carry particles towards lower
concentrations. Consequently, the chemical potential governs diffusive interactions
in the same way that temperature and pressure govern thermal and mechanical
interactions:

¢ thermal interaction — heat flows towards lower temperature;
¢ mechanical interaction — boundaries move toward lower pressure;

* diffusive interaction — particles move toward lower chemical potential.

The configuration of lowest chemical potential may involve a compromise
between potential energy and particle concentration. A drop in one may be sufficient
to offset a gain in the other. When particles move into regions of different potential
energy, thermal energy is absorbed or released and temperatures change accordingly.
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Figure 5.7 lllustration of
the three kinds of

processes through which
the internal energy E of a

system may be increased:

transferring heat energy
dQ, doing work on the
system —d W, or
transferring particles
ndN. Altogether, we can
write the change in
internal energy of a
system as dE = dQ—
dW+ ud N, which is the
first law of
thermodynamics.
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D The first law of thermodynamics

In the preceding sections we examined each of the three ways by which the
internal energy of a system may be changed (Figure 5.7):

* by transferring heat in or out of the system;
* by having work done on or by the system;
* by adding or removing particles from the system.

These are expressed in results 5.2 and 5.4, which together constitute the first law
of thermodynamics:

First law of thermodynamics
The change in internal energy of a system is given by

dE =dQ — dW + pwdN. (5.6)

The d term is preceded by a negative sign, because dW is the work done by the
system. If more than one kind of work is being done (e.g., equation 5.3) then dW
must be replaced by a sum over different kinds of work dW;. Similarly, if there
are several kinds of particles in the system then the last term becomes Zi widN;,
where the sum is over the different types of particle:

dE =dQ =) dW; + ) wdN;. (5.7)
J i

E Exact and inexact differentials

The differentials appearing in the first law, (5.6), are of two types, “exact” and
“inexact.” An exact differential is the differential of a well-defined function, but
an inexact differential is not. This difference has several implications, which we
now explore.
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E.1 The general case

Consider the change in value of a given function, ' = F(x, »), as we move along
a path from an initial point (x;, y;) to a final point (x , y r). The total change AF
is the integral of the exact differential dF:

s
AF = / dF = F(xyz, yr) — F(xi, y1)-

It is uniquely determined by the two endpoints, (xr, yr) and (x;, y;), and does
not depend on the route taken (Figure 5.8). Examples would include the exact
differentials AE, AN, AV, Ap. By contrast, the integral of an inexact differential
does depend on the path taken.

The differential of a function is given by

oF oF
dFF = — dx+ —dy (5.8)
dx ay

Therefore, one way to determine whether a differential
d® = g(x, y)dx + h(x, y)dy (5.9)

is exact is to see whether we can find some function F'(x, y) such that
oF oF
— =g(x,y) and — = h(x, ).
ox ay
If we can, the differential is exact, and if we can’t, it is inexact.
Alternatively, we can use the identity
PF _ 9F
dydx  9xdy

Combining this with equations 5.8 and 5.9, we can see that for exact differentials

dg ok
%8 _ 2 (5.10)
ay  dx
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Figure 5.8 (a) When
integrating a differential
between initial and final
points, the result is
independent of the path
(paths 1, 2, and 3 are
shown) if the differential
is exact, but not if it isn't.
(b) Two of the infinite
number of possible paths
for a system to follow
between given initial and
final values of the
pressure and volume.
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Example 5.1 Determine whether d® = 2xy dx + x? dy is an exact differential.
We can see that this is indeed an exact differential of the function

F = xzy ~+ constant,

because

oF oF

— =2xy and — =2

dx ay

Or we can use equation 5.10. For this example g = 2xy and & = x2, so

0 oh

% _ox  and  Z—ox
ay dx

The two are the same, so the differential is exact.

E.2 Applications to physical systems

In real physical systems, examples of exact differentials would include changes
in particle number, in internal, energy, or in volume (AN, AE, AV):

These are all properties of the system that can be measured at any time. Changes
can be determined from initial and final values alone without knowing what
happened in between. This is not true, however, for heat or work. Although we
can determine changes in internal energy during a process from its initial and
final values alone, we would not know how much of this change was caused by
heat entering the system and how much by work done on the system, unless we
knew the particular path followed by the process.

For example, suppose that we measure the internal energy of an iron bar and
then leave the room while a friend altered its energy. When we return, it might
be hotter, and from the increased temperature we can determine the increase in
internal energy, AE. But we will not be able to tell whether that change was made
by adding heat to the bar, or by doing work on it, such as by hitting it with a
hammer. That is, we would not know AQ or AW.

If we find the bar squeezed in a clamp, we might suspect that work had been
done on it (i.e., the clamp squeezed it). However, it could be that the bar was
slipped into the clamp when cooled and contracted, then was reheated, expanding
and becoming stuck against the clamp, without the clamp having moved at all.
So our guess would be wrong.

In summary, changes in internal energy AE, volume AV, and number of
particles AN during a process can be determined from initial and final values
alone, independently of the particular details of the process (i.e., the path taken).
This makes dE, dV, dN exact differentials. By contrast, the heat added, AQ, or
work done, AW, do depend on the details of how the process is carried out. So
dQ and dW are inexact differentials.
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Notice that we can write the inexact differential d in terms of an exact
differential dV': dW = pdV. In Chapter 8 we will find a way of doing the same
for dQ.

F Dependent and independent variables

In thermodynamics we often have many different system variables, such as inter-
nal energy, temperature, pressure, volume, chemical potential, number of parti-
cles, entropy, and others, of which only two or three are independent. This could
cause much confusion, particularly when the partial derivatives are involved.

For example, consider some function F' that is a function of many different
variables ¢, 7, s, t,u,v,w,x,y, ..., only two of which are independent. To
find the partial derivative with respect to one independent variable, for exam-
ple 0F/0u, we must hold the other independent variable constant. But how
will we indicate which of the various possible “other” variables is the one held
constant?

There are two customary ways of doing this. The notations

dF (u, x) IF
il Sk B or il
ou ou /.

are the normal ways of indicating that there are only two independent variables
involved and that x is the one held constant while the partial derivative with
respect to u is taken. By extension, the notations
oF(w,x,y) oF
ow % (a_w)

indicate there are three independent variables and that x and y are held constant
while the partial derivative with respect to w is taken. To take the desired partial
derivative, the function must first be written entirely in terms of the chosen set of
independent variables.

Example5.2 Consider a function of three variables, F'(x, y, z), only two of which
are independent. The three are interrelated by y = x%z. Given that
FGe,y,z)=x+xyz

find (0F /0x),.
First, we must write the function in terms of the chosen independent variables,
x and y. Writing z in terms of x and y gives
2
z:i, so F(x,y)=x+xy Ed =x+y—.
x? x? x

Now that F is written in terms of x and y we can take the appropriate partial

derivative:
aF\ | ¥?
ax /), o x?’
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Summary of Sections D-F

The change in internal energy for a system undergoing thermal, mechanical, and/or
diffusive interactions is given by the first law of thermodynamics (equation 5.6):

dE =dQ — dW + pudN (first law).
A differential d® = g(x, y)dx + A(x, y)dy is exact if it meets any of these criteria:

* the integral from (x;, ;) to (xz, y) is independent of the path taken for all values of initial
and final points;

* there exists some function F'(x, y) such that dF/dx = g and dF/dy = h;

* 0g/dy = oh/ox.

In the first law, the change in internal energy dZ is an exact differential, as is the
change in volume dJ and the change in the number of particles dV. However, the
heat added dQ and the work done by the system d}# are not exact differentials. One
consequence of this is that when the internal energy of a system is changed by a finite
measured amount AE there is no way of knowing how much of that energy entered
as heat AQ and how much as work done on the system, —A W, without knowing the
particular thermodynamic path followed in going from the initial to the final
state.

For partial derivatives, we must indicate which variables are being held constant,
and we must write all other variables in terms of the chosen independent variables
before the derivative can be taken.

Problems

Sections A and B
1. Consider a small hot rock at 390 K inside a building with cold air and cold

walls at 273 K. Air is a very poor conductor of heat, so the bulk of the energy

transfer is radiative.

(a) Are the molecules of the walls and air sending out electromagnetic
waves?

(b) Since the cooler system is much larger, doesn’t it radiate much more
energy altogether than the rock?

(c) Considering your answer to part (b), why is there a net flow of energy
from the rock to the air, rather than vice versa?

2. Consider a system that is not under pressure but whose volume decreases as
a container wall moves inward.
(a) Is any work done on the system? Why or why not?
(b) Explain from a microscopic point of view why the internal energy is not
increased in this case. (Hint: If it is not under pressure, are there any
molecules colliding with the container walls?)
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3. Consider a system under tension, such as a stretched rubber band, or a
stretched steel bar. Now suppose that you let it contract somewhat.
(a) Does its internal energy increase or decrease?
(b) Ifits temperature increases, how might you explain this? (Hint: potential
wells, such as those in Figure 4.4, might be useful.)

4. Calculate the work done by a gram of water when it vaporizes at atmospheric
pressure. Use the fact that a mole of water vapor at 100 °C and atmospheric
pressure occupies a volume of 30.6 liters. How does this work compare with
the latent heat of vaporization, which is 2260 joules per gram?

5. When the gasoline explodes in an automobile cylinder, the temperature is
about 2000 K, the pressure is about 8 x 10° Pa, and the volume is about
100 cm?. The piston has cross sectional area 80 cm?. The gas then expands
adiabatically (i.e., no heat leaves or enters the cylinder during the process) as
the piston is pushed downward, until its volume increases by a factor of 10.
For adiabatic expansion of the gas, p/’” = constant, where y = 1.4.

(a) How much work is done by this gas as it pushes the piston downward?
(b) Assuming it behaves as an ideal gas (pV' /T = constant), what is the final
temperature of the gas?

6. A certain insulating material has 5 x 10?? atoms, each having six degrees
of freedom. It initially occupies a volume of 10~ m? at a pressure of 10°
Pa. The pressure and volume are related by p(V — V,) = constant, where
Vo =0.94 x 107 m?.

(a) If the pressure on the system is increased ten fold, how much work is
done by the system?

(b) Suppose that the potential energy per particle u( remains constant, and
that the pressure increases sufficiently quickly that no heat enters or
leaves the system during the process, i.e., the process is adiabatic. By
how much does the temperature of the insulator rise?

Section C
7. Is the potential energy reference level u, for an H,SO, (sulfuric acid)
molecule entering fresh water positive or negative? (The temperature rises.)
For the molecules entering the solution, is the change in chemical potential
positive or negative?

8. The boiling point of water is considerably higher than the boiling point for
other liquids composed of light molecules such as NH3 or CHy. It is even
much higher than the boiling point of molecules nearly two or three times as
massive, such as N;, O,, or CO,. Why do you suppose this is?

9. We are going to examine mechanisms for the cold packs that are used for
athletic injuries, where two chemicals are mixed and the resulting temperature
of the pack drops remarkably.
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10.

11.

12.

13.

14.

15.

16.

(a) Suppose that when you mix two chemicals, some of the molecules dis-
sociate, giving the system more degrees of freedom without changing
the total energy or the system’s overall potential energy reference level,
Nuy. What would happen to the temperature, and why?

(b) What would happen to the temperature if the number of degrees of free-
dom didn’t change, but the overall potential energy reference level, Nuy,
rose as a result of the mixing?

Initially, system B has 2 x 10%° particles, each having u¢ 3 = —0.35eV
and five degrees of freedom. System A has 10?® particles each having
uo,4 = —0.40eV and three degrees of freedom. After these two systems
are combined, the situation for particles of system 4 doesn’t change but the
particles of system B have u 5 = —0.25eV and three degrees of freedom
each. If the two systems are both at temperature 290 K before they are mixed,
what will be the temperature of the combined system after mixing?

A certain material vaporizes from the liquid phase at 700 K. In both phases,
the molecules have three degrees of freedom. If #( in the liquid phase is
—0.12 eV, what is the latent heat of vaporization in joules per mole?

Repeat the above problem for the case where the molecules have three degrees
of freedom in the liquid phase but five in the gas phase.

Consider a solid that sublimes (goes from solid to gas) at 300 K. In the solid
phase, the molecules have six degrees of freedom and g = —0.15¢V, and
in the gas phase, they have three degrees of freedom (and u#y = 0, of course).
What is the latent heat of sublimation in joules per mole?

Consider a system of three-dimensional harmonic oscillators, for which the
energy of each is given by

e =ug+ (1/2k(x? + y* +2%) + (1/2m) (p2 + p + p2).

Suppose that their mutual interactions change in such a way that u drops by
0.012 eV, without any energy entering or leaving the system as a whole. For
any one oscillator, find the average change in (a) thermal energy, (b) kinetic
energy, (c) Potential energy.

Estimate the temperature inside a thermonuclear explosion in which deu-
terium nuclei fuse in pairs to form helium nuclei. Assume that each nucleus
has three degrees of freedom and that 10% of the deuterium fuses into helium.
Assume that the average drop in u( upon fusing is 1 MeV per nucleon.

Consider the burning of carbon in oxygen. Estimate the value of the change in
potential energy reference levels for the molecular ingredients, u¢(CO;) —
[10(C) + u((0,)], assuming that the carbon and oxygen start out at room
temperature (295 K) and that the temperature of the flame is 3000 K. Assume
that the carbon (graphite) atoms initially have six degrees of freedom, and



17.

18.

19.

20.

Interactions between systems

that both oxygen and carbon dioxide molecules have five degrees of freedom
apiece.

The electrical polarization of the water molecule makes water an exceptional
material in many ways. The interactions between neighboring molecules
are extremely strong, yielding very deep potential wells. Furthermore, these
interactions (and hence u) change noticeably with temperature. To demon-
strate this, calculate the number of degrees of freedom per molecule that
would be needed to give the observed specific heat, 4186 J/(kg K) if u( does
not change.

Suppose that 0.15 moles of some acid are added to a liter of water; both are
initially at room temperature. The addition raises the temperature by 0.1 K.
How much deeper is the potential well of the acid molecules when in water
than when in the concentrated acid? (The heat capacity of a liter of water is
4186J/K.)

From a molecular point of view, why is u for:

(a) liquid water less (more negative) than that of water vapor?
(b) ice less than that of liquid water?

(c) salt in water less than that of salt in 0il?

The latent heat of vaporization for a certain acid at room temperature is

19260 J/mole. The molecules have six degrees of freedom in both phases.

The work done on it due to its change in volume during condensation is

PAV ~ nRT.

(a) Assuming that self-interactions (and hence 1) are negligible in the vapor
state, use the above information to calculate u for this acid (in eV) in
the liquid state at room temperature.

(b) When 1072 mole of this acid in the liquid form is added to one liter of
water, both at room temperature, the temperature of the water rises by
0.1 °C. What is the depth of the potential well for this acid in water?

Section D

21.

22.

One mole of air at 0 °C and atmospheric pressure (1.013 x 10° Pa) occupies

22.4 liters of space. Suppose we compress it by 0.2 liter (a small enough

amount that we can assume the pressure remains constant.)

(a) How much work have we done?

(b) How many joules of thermal energy would we have to remove for the
internal energy to remain unchanged?

(c) If we did both of these, but found that the temperature decreased slightly,
what would we conclude about the behavior of 1y as molecules get closer
together?

A magnetic moment is induced in most materials when they are placed in
a magnetic field. For aluminum, this induced magnetic moment is directly
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23.

24.

proportional to the applied field and aligned parallel to it, p = ¢B, where the

constant of proportionality ¢ is equal to 1830 A>m3/N fora 1 m? sample. This

sample of aluminum is placed in an external magnetic field, whose strength
is increased from 0 Tto 1.3 T; 1 T = 1 N/(Am).

(a) How much work is done on the sample?

(b) Since this work is done on the sample, the sample’s internal energy
increases. But the potential energies of the atomic magnets decrease as
they align with the imposed external field. How can the system’s internal
energy increase if the sample’s potential energy decreases? (Hint: Think
of what the internal energy does and does not include.)

A gas with 10?7 degrees of freedom is under a pressure of 150 atm. It is
allowed to expand by 0.01 m? without any heat or particles being added or
removed in the process. Calculate (a) the work done by the gas, (b) the change
in temperature. (Hint: Find the change in internal energy first.)

As liquid water is compressed at constant temperature, its pressure increases
according to the formula: p = [1 4+ 2.5 x 10*(1 — V/ V)] atm, where V; is
its volume under atmospheric pressure, 1.013 x 10° Pa.

(a) If some water has a volume of 1 liter at atmospheric pressure, what
will be its volume at the bottom of the ocean, where the pressure is
500 atm?

(b) How much work is done by a liter of water that is brought to the surface
from the ocean bottom? (Hint: The pressure is not constant, so you will
have to integrate pd/V'.)

(¢) Knowing that to change the temperature of water by 1 °C requires a
change in internal energy of 4186 J per kg, calculate the change in
temperature of the water sample brought up from the bottom of the
ocean. Assume that it is closed and insulated, so that no heat or particles
enter or leave the sample as it is raised.

Section E

25.

26.

Test each of the following differentials to see whether they are exact, using
two methods for each:

(a) —ysinxdx + cosxdy,

(b) ydx + xdy,

(c) yx3e¥dx + x3e*dy,

(d) (1 +x)ye"dx + xe*dy,

(e) 4x3y~2dx — 2x*y3dy.

State which of the following differentials are exact:
(a) 3x2y%dx + 2x3ydy,

(b) 3x%e’dx + 2x3e’dy,

(¢) [1 4+ In(x)]sin ydx + x Inx cos ydy,

(d) e*’[4xy In(y)] dx + e*[In(y) + 1] dy.



27.

28.

29.

30.

31.

Interactions between systems

Consider the path integral of the exact differential dF = 2xydx + x2dy. Inte-
grate this from (1, 1) to (4, 3) along both the paths 1 and 3 in Figure 5.8a.
Are the two results the same?

Consider the path integral of the differential dG = 3xydx + x2dy. Integrate
this from (1, 1) to (4, 3) along paths 1 and 3 of Figure 5.8a. Are the two
results the same? Is this differential exact?

The work done by a system can be written as dW = pdV’, where p is the
pressure and dV the change in volume. Compute the work done by a system
as its pressure and volume change from the initial values p;, V; to the final
values p s, Vy, by evaluating the integral AW = [ pdV:

(a) along path 1 in Figure 5.8b.

(b) Along path 2 in Figure 5.8b.

(c) Does the amount of work done depend on the path taken?

Find the integral of the differential dF = y*dx + xdy from point (2, 2) to

point (6, 5):

(a) along a path that first goes straight from (2, 2) to (6, 2) and then straight
from (6, 2) to (6,5),

(b) along a path that first goes straight from (2, 2) to (2, 5) and then straight
from (2, 5) to (6, 5),

(c) along a path that goes along the diagonal line y = (3/4)x + (1/2) from
(2,2) to (6, 5).

Repeat the above problem for the function dG = y?dx + 2xydy.

Section F

32.

33.

34.

Suppose that w = xy and z = x?/y. Express:
(a) z as a function z(w, y) of w and y,

(b) z as a function z(w, x) of w and x,

(c) was a function w(z, y) of z and y,

(d) was a function w(z, x) of z and x,

(e) x as a function x(y, z) of y and z.

For the problem above, evaluate the following partial derivatives:
(a) (3z/3w)y, (b) (OW/dy):, (¢) (3x/Dy)z, (d) (3y/dW)-.
Consider the variables x, y, z, u, v, where

x(u,v) = u?v, y@u,v) = u* +2v?, z(x,y) = xy.

Any of these five variables can be expressed as a function of any other two.
Find the correct expression for:

(a) y as a function y(x, v) of x and v,

(b) z as a function z(u, v) of # and v,

(c) v asa function v(y, u) of y and u,

(d) (@y/9x),,(e) (3x/0u),, (f) (9x/du),.
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35. Given that x = y?z —w and w = x + y?, what is (9w /3y),?
36. Given that w = xe” and x = y’z, what is (0w/0z),?

37. Consider the function f(q,r, s, t) = gst —€’, where r = st and s = ¢°r.
What is (3f/01),?

38. For a certain ideal gas, the variables E, p, V', N, T are interrelated by the
following equations: E = (3/2)NkT, pV = NkT, N = constant. What is
(OE/dp)y?



Part IV
States and the second law
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We now begin our study of the possible configurations or states for macroscopic
systems. Because the volume of a quantum state in six-dimensional phase space
is extremely small, a very large number of such states are available to the particles
of most systems.

One mole of material contains roughly 10?4 atoms, each of which could be
in a large number of different quantum states. Consequently, the total number
of possible states for any macroscopic system is huge. Numbers like 101" are
typical. They are probably much larger than any numbers you have encountered
before (Table 6.1).

When energy is added to a system it gives the particles access to additional
states of higher energy. Even a small increase in the number of states per particle
results in a very large increase in the number of states for the system as a whole.
As an example, consider a system of coins, each of which has two possible
states: heads or tails. A system of N such distinguishable coins has 2 x 2 x 2 x
2 x --- = 2% different possible heads—tails configurations. If the number of states
per coin were increased from 2 to 3 (three-sided coins?), the number of possible
states for the system would increase from 2V to 3%, an increase by a factor
(3/2)N.If N = 10%*, this would be a factor of (3 /2)1024 ~ 101", For macroscopic
systems, any small increase in the number of states per particle results in a huge
increase in the number of states for the system.
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Table 6.1. Some large numbers

grains of sand in Waikiki beach 108
age of Universe in microseconds 102
water molecules in Atlantic Ocean 1046
atoms in Earth 1050
volume of Universe in cubic microns 1097
states for molecules in a glass of water 1/000,000,000,000,000,000,000,000
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Figure 6.1 The addition of energy or particles usually occurs in a small localized
region of a system, such as along a boundary. The system is not in equilibrium until
interactions among particles have provided the opportunity for the added energy
and particles to be anywhere, so that all possible distributions are equally likely. The
time required for this to happen is the relaxation time. From that point on, the
probabilities for the various possible configurations remain the same.

A Equilibrium

An isolated system is said to be in equilibrium when the probabilities for the
various possible configurations of its elements do not vary with time. For example,
suppose that we release ammonia molecules at the front of a room. Initially, the
states near the point of release have relatively high probabilities of containing
these molecules, whereas those at the rear of the room have no chance at all.
But the molecules migrate and the probabilities change until the molecules are
equally likely to be found anywhere in the room. At this point the probabilities
stop changing and the system is in equilibrium.

Similarly, energy transfer through heating or compression (Figure 6.1) may
initially affect only particles in one local region. In time, however, interactions
among the particles distribute this energy throughout the system until all possible
distributions are equally probable. From this point on, the system is in equilibrium.

The characteristic time needed for a perturbed system to regain equilibrium is
called the “relaxation time.” When applying statistical tools to processes involv-
ing macroscopic systems, it is helpful if the systems are near equilibrium. This
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requires that the transfer of heat, work, or particles must proceed at a rate that
is slow compared with the relaxation time for that particular process. When this
happens, we say the process is “quasistatic.”

Summary of Section A

The number of quantum states that are accessible to physical systems is usually
extremely large, but finite. When the number of states accessible to the individual
elements is increased even very slightly, the number of states accessible to the
system as a whole increases immensely.

An isolated system is said to be in equilibrium when the probabilities for it to be
in the various accessible states do not vary with time. If a system is perturbed, the
characteristic time required for it to come into equilibrium is called the relaxation
time for that process. When interactions between systems proceed slowly enough
that the systems are always near equilibrium, the process is called quasistatic.

B The fundamental postulate

The tools for the statistical analysis of the equilibrium behaviors of large systems
are based on one single, very important fundamental postulate.

Fundamental postulate

An isolated system in equilibrium is equally likely to be in any of its accessible
states, each of which is defined by a particular configuration of the system’s
elements.

This postulate seems quite reasonable, but this in itself does not justify its
adoption. Rather, we must validate it by comparing the results of experiments
with predictions based on the postulate. This has been done for a huge number
of systems and processes, and we find that the predictions are correct every time.

If the number of states accessible to the entire system is given by €2, and all
are equally probable, then the probability for the system to be in any one of them
must be (Figure 6.2)

Panyonestate = I/Q, (61)

and if a subset has €2; states then the probability for the system to be in this subset

is
Q;
Pyupseti = o (6.2)
Example 6.1 Consider the orientations of three unconstrained and distinguish-
able spin-1/2 particles. What is the probability that two are spin up and one spin
down at any instant?
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Figure 6.2 (Left) A representation of the Q2 states that are available to a system. If all
are equally probable then the probability that the system is in any one state is

P =1/, and the probability that it is in a subset containing Q; of these states is

P = Q;/ Q. (Right) If the magnitude of a particle’s momentum is constrained to be
less than pg, what is the probability that its momentum is less than pg/10?

Of the eight possible spin configurations for the system,

I Y I I o N O B N A R 22

the second, third, and fourth comprise the subset “two up and one down”. There-
fore, the probability for this particular configuration is

3
PZupandldown =3

Example 6.2 Consider electrons in a plasma whose momenta are constrained to
have magnitudes less than some maximum value py. What is the probability that
the momentum of any particular electron is less than one tenth this maximum
value (Figure 6.2)?

The number of accessible states is proportional to p* (equation 1.4):

V.V, V.4mp'/3)
Q= rEn E x p.

Therefore, the probability that the electron has momentum less than py/10 is

Q 3 10\°
P,~=_=p_=<”°/ ) =107,

Q  p Do

C The spacing of states

It is sometimes convenient to identify the state of a small system by its energy.
If several different states have the same energy, we say that the energy level is
“degenerate.”

For large systems, the degeneracy of each energy level is huge. In the home-
work you will be able to show that there are about 10! different ways of
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arranging the air molecules (if you could distinguish them) in your room so
that half of them are in the front and half in the back. All these different arrange-
ments have exactly the same energy (i.